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Chapter 1

Introduction

1.1 From the Authors

This book is a work in progress. Please forgive (or point out) any mistakes you
see. Feel free to contact the authors of any of these notes. Feel free to use these
notes in your classes.

Texas-style teaching of mathematics courses was developed and practiced
by Robert Lee Moore throughout a mathematical career spanning from 1915
until 1969. The method has been advocated by such veteran mathematicians
as Halmos [13], Jones [16], and Yorke [35]. Dr. Hubert Stanley Wall worked in
conjunction with Moore from the mid-1940’s until the late 1960’s and Hyman
Joseph Ettlinger associated with Moore from 1920 to 1970. Throughout the
years mathematicians have adopted and modified Moore’s original method (and
notes) for use in a variety of mathematics courses. Perhaps the best references
to both the man and the method are the Mathematical Association of America’s
documentary on Moore [23] the texts that Wall developed while at the Univer-
sity of Texas, [32-33], and the biography of Moore developed by D. Redginald
Traylor, [29].

This is a book of materials on courses modeled after the Moore Method.
The conclusion of the book offers further discusson of the method along with
references which are described in some detail for the reader wishing to familiarize
himself with other aspects of the method. Suffice it to say that the method is
“discovery” driven and, in the words of Redge Traylor [29] “encourages the
students to do research at his own level.”

This book provides a starting point for instructors interested in using such
methods in the classroom and serves as a reference for those who are already
familiar with these techniques. Texas-style methods are already widely imple-
mented in mathematical curricula across the nation, however, there are few
resourses and support materials available to those who wish to use this method
of teaching. For this reason, instructors desiring to implement a Texas-style
course often adapt notes from courses they took as students or develop their
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Texas-Style Theorem Sequences

own notes. Both of these activities are time consuming and difficult to imple-
ment smoothly on the first attempt. This book provides theorem sequences
for a variety of undergraduate and graduate courses which might be used as a
starting point. Each theorem sequence constitutes a self-contained course that
has been successfully implemented, often for years, by the contributor of that
sequence. In addition to the theorem sequences, each contributor provides some
helpful comments about his experiences using the sequence.

We are deeply indebted to all of those who have supported our efforts by
contributing their own materials, proof reading, and offering support in other
ways. A brief list of those individuals include: TBA.

1.2 From Advocates of the Method

What then is the secret—what is the best way to learn to solve
problems? The answer is implied by the sentence I started with:
solve problems. The method I advocate is sometimes known as the
‘Moore method’, because R.L. Moore developed and used it at the
University of Texas. It is a method of teaching, a method of creating
the problem-solving attitude in a student, that is a mixture of what
Socrates taught us and the fiercely competitive spirit of the Olympic
games. P. R. Halmos

What Moore did: ... After stating the axioms and giving mo-
tivating examples to illustrate their meaning he would then state
definitions and theorems. He simply read them from his book as
the students copied them down. He would then instruct the class to
find proofs of their own and also to construct examples to show that
the hypotheses of the theorems could not be weakened, omitted, or
partially omitted. ... “When a student stated that he could prove
Theorem x, he was asked to go to the blackboard and present the
proof. Then the other students, especially those who hadn’t been
able to discover a proof, would make sure that the proof presented
was correct and convincing. Moore sternly prevented heckling. This
was seldom necessary because the whole atmosphere was one of a
serious community effort to understand the argument. F.Burton
Jones

Since the roots of the problems described above run so deep it is
imperative that potential solutions (such as the Moore method) be
implemented early in students’ careers — and not just for stduents
planning to become mathematicians. J. A. Yorke and M. D. Hartl

D. Taylor gives the following criteria which characterize the Moore
method of teaching include:

e The fundamental purpose: that of causing a student to develop
his power at rational thought.

Copyright 1/01 W. T. Mahavier and J. P. Ochoa 4
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e Collecting the students in classes with common mathematical
knowledge, striking from membership of a class any student
whose knowledge is too advanced over others in the class.

e Causing students to perform research at their level by con-
fronting the class with impartially posed questions and conjec-
tures which are at the limits of their capability.

e Allowing no collective effort on the part of the students inside
or outside of class, and allowing the use of no source material.

e Calling on students for presentation of their efforts at settling
questions raised, allowing a feeling of “ownership” of a theorem
to develop.

e Fostering competition between students over the settling of
questions raised.

e Developing skills of critical analysis among the class by bur-
dening students therein with the assignment of “refereeing” an
argument presented.

e Pacing the class to best develop the talent among its member-
ship.

e Burdening the instructor with the obligation to not assist, yet
respond to incorrect statements, or discussions arising from in-
correct statements, with immediate examples or logically sound
propositions to make clear the objection or understanding.

Copyright 1/01 W. T. Mahavier and J. P. Ochoa 5



Texas-Style Theorem Sequences

Copyright 1/01 W. T. Mahavier and J. P. Ochoa 6



Chapter 2

Analysis, Mahavier and
Mahavier



Texas-Style Theorem Sequences

2.1 To the Instructor

This theorem sequence constitutes a self-contained, one-semester course in real
analysis. The goal of the course is two fold. First we desire to mature the student
mathematically and secondly we prove rigorously the theorems that are typically
touched upon in an introductory calculus course, but not rigorously proved,
including the extreme value theorem, mean value theorem, Rolles theorem, the
fundamental theorem of calculus, etc. Because the notes require no prerequisites
they can serve as a replacement or a sequel to courses commonly referred to as
“Foundations of Mathematics” or “A First Course in Logic.”

This course is structured similarly to the course entitled, A first course in
topology, and the reader should read the introduction to that sequence for a
discussion of the format, sylabus, and grading for the course.

A problem or theorem marked (T) is topological in nature. A problem or
theorem marked (CA) requires the completeness axiom. A problem or theorem
marked (C) is related to Cauchy sequences and the material following does not
require the use of this problem or theorem.

2.2 To the Student

Analysis is an area of mathematics, just as Algebra, Geometry, and Topology
are areas of mathematics and is usually defined heursitically or not at all. In
your calculus sequence you learned about the topics of limits, continuity, dif-
ferentiability, and integration at an introductory level. In this course, we will
follow the same order that you followed in calculus, but we will spend more time
on the mathematical structures than on the application of the concepts. We will
define each concept rigorously and present the material that you will recognize
from calculus such as the extreme value theorem, mean value theorem, Rolles
theorem, and the fundamental theorem of calculus.

2.3 Theorem Sequence
Definition 1 By a point is meant an element of the real numbers, R.

Definition 2 By a point set is meant a collection of one or more points.

Definition 3 The statement that the point set M is linearly ordered means
that there is a meaning for the words “less than (<),” “less than or equal to
(<),” “greater than (>),” and “greater than or equal to (>).” If each of a, b
and c is in M, then

e ifa<bandb<cthena<c
e one and only one of the following is true:

—a<hb,

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 8
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—b<a,or

—a=b».
Axiom 4 R is linearly ordered.
Axiom 5 If p is a point there is a point less than p and a point greater than p.

Axiom 6 If p and q are two points then there is a point between them, for
example, (p+q)/2.

Axiom 7 Ifa < b and c is any point, then a +c < b+ ¢,
Axiom 8 Ifa<bandc>0, thena-c<b-c. Ifc<0, thena-c>b-c.

Axiom 9 If z is a point, then z is an integer or there is an integer n such that
n<z<n+l.

Definition 10 The statement that the point set O is an open interval means
that there are two points a and b such that O is the set of all points between a
and b.

Definition 11 The statement that I is a closed interval means that there are
two points a and b such that p € I if and only if p=a, p=b, or p is between a
and b.

Notation: We use the notation (a,b) to denote the open interval consisting
of all points p such that a < p < b. Similarly we use the notation [a,b] to denote
the closed interval determined by the two points a and b where a < b. We do

not use (a,b) or [a,b] in case a = b, although many mathematicians and texts
do.

Definition 12 If M is a point set and p is a point, the statement that p is a
limit point of the point set M means that every open interval containing p
contains a point of M different from p.

Problem 13 Show that if M is the open interval (a,b), and p is in M, then p
is a limit point of M.

Problem 14 Show that if M is the closed interval [a,b], and p is not in M,
then p is not a limit point of M.

Problem 15 Show that if M is a point set having a limit point, then M con-
tains (at least) 2 points.

Problem 16 Show that if M is the set of all positive integers, then no point is
a limit point of M.

Question 17 Assume M is a point set such that if p is a point of M, there is
a first point of M to the left of p and a first point of M to the right of p. Is it
true that M cannot have a limit point?

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 9
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Problem 18 Show that if H is a point set and K is a point set and p is a limit
point of HN K, then p is a limit point of H and p is a limit point of K.

Problem 19 Show that if H is a point set and K is a point set and every point
of K is a limit point of H and p is a limit point of K, then p is a limit point of
H.

Problem 20 If H is a point set and K is a point set and p is a limit point of
H UK, then p is a limit point of H or p is a limit point of K.

Problem 21 Show that if M is the set of all reciprocals of positive integers,
then 0 is a limit point of M.

Definition 22 The statement that the point sequence p1,p2,... converges to
the point p means that if S is an open interval containing p then there is a
positive integer n such that if m is a positive integer and m > n then p,, € S.

Definition 23 The statement that the sequence p1,ps, 3, - . - CONVErges, means
that there is a point p such that py,ps2,ps,... converges to p.

Problem 24 For each positive integer n, let p, = 1 — 1/n. Show that the
sequence p1,p2,Ps, - - - converges to 1.

Problem 25 For each positive integer n, Let pan,_1 = 1/(2n— 1) and let pe, =
14 1/2n. Show that the sequence p1,p2,D3,-.. does not converge to 0. Hint: If
m is a positive, odd integer then p,, = 1/m while if m is a positive, even integer
then py, = (m + 1)/m.

Problem 26 For each positive integer n, let pa, = 1/(2n—1), and let pa, 1 =
1/2n. Show that the sequence p1,p2,ps,- .. converges to 0.

Notation: If p;,ps,ps,-.. is a sequence, then {p;} denotes the range of the
sequence. That is, {p;} denotes the point set to which the point z belongs if
and only if there is a positive integer n such that z = p,,.

Problem 27 Show that if the sequence p1,p2,Ps,- .. converges to the point p,
and, for each positive integer n, p, # Pni1, then p is a limit point of the set
which is the range of the sequence.

Problem 28 Show that if p # 0, then p is not a limit point of the set {1,1,1,...}.

» 93933
Problem 29 Show that if ¢ is a number and p1,ps,ps,--. is a sequence which
converges to the point p, then the sequence c-p1,c-ps,c-ps,... converges to c-p.

Problem 30 Show that if the sequence pi,p2,ps,-... converges to p and the
sequence qi,q2, g3, - - . converges to q, then the sequence p1+q1,p2+q2,P3+3qs, . - -
converges to p +q.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 10
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Definition 31 The statement that p is the first point to the right of the
point set M means that p is to the right of every point of M and if q is a point
to the left of p, then q is not to the right of every point of M.

Definition 32 The statement that p is the rightmost point of M means that
p is in M and no point of M is to the right of p.

Definition 33 Leftmost point of M and first point to the left of M are
defined similarly.

Problem 34 Show that if M is a point set, there cannot be a both a rightmost
point of M and a first point to the right the point set M.

Problem 35 Show that if M is a point set and there is a point p which is the
first point to the right of M, then p is a limit point of M.

Theorem 36 If the sequence pi,p2,ps3 ... converges to the point p and q is a
point different from p, then pi1,pa, D3, --. does not converge to q.

Definition 37 The statement that the point set M is finite means that there
is a positive integer n such that M contains n points but M does not contain
n + 1 points.

Definition 38 The statement that the point set M is infinite means that M
is not finite.

Theorem 39 If M is a finite point set then M has a rightmost point and a
leftmost point.

Theorem 40 If the point p is a limit point of the point set M and S is an open
interval containing p, then S N M is infinite.

Theorem 41 If the sequence pi,ps2,Pp3,--. converges to the point p and q is
a point different from p, then q is not a limit point of the range {p;} of the
SEqUENCE P1,D2, D3y - - --

Definition 42 (T) The statement that the point set M is an open point set
means that for every point p of M there is an open interval which contains p
and is a subset of M.

Definition 43 (T) The statement that the point set M is a closed point set
means that if p is a limit point of M, then p is in M.

Note: This does not mean that M has a limit point. If a set M has no limit
point, then it is a closed point set. We could equivalently define closed by saying
that M is closed if and only if there is no limit point of M that is not in M.

Theorem 44 (T) If M is a closed point set, then the set of all points not in M
is an open point set.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 11
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Theorem 45 (T) If M is an open point set, then the set of all points not in M
is a closed point set.

Theorem 46 (T) Ifp is a point, there is a sequence of open intervals Sy, S2, S3, - . .
each containing p such that for each positive integer n, S, 11 C S, and p is the
only point that is in every open interval in the sequence.

Definition 47 The statement that the point set M is bounded means that M
is a subset of a closed interval.

Definition 48 Let M be a point set. The statement that M is bounded below
means that there is a point z such that z is less than or equal to m for every m
in M. Bounded above is defined similarly.

Theorem 49 If the sequence p1,p2,ps,. .. converges to the point p, then M =
{p1,p2,p3--.} is bounded.

Axiom 50 The Completeness Axiom If M is a point set and there is a
point a to the right of every point of M, then there is either a rightmost point
of M or a first point to the right of M.

Notation: Similarly, if there is a point to the left of every point of M, then
there is either left most point of M or a first point to the left of M.

Theorem 51 (CA) If M is a closed and bounded point set, then there is a
leftmost point of M and a rightmost point of M.

Definition 52 The statement that the sequence p1,p2,P3,--. is an increasing
sequence means that for each positive integer n, p, < Pni1-

Definition 53 The statement that the sequence py, p2, 3, - - - is non-decreasing
means that for each positive integer n, pp < Ppi1-

Definition 54 We define a decreasing and non-increasing sequence simi-
larly.

Theorem 55 (CA) If p1,p2,D3,- - - is a non-decreasing sequence and there is a
point, p, to the right of each point of the sequence, then the sequence converges
to some point.

Problem 56 (T) Show that if M is a pointset and p is a point of M and every
closed interval containing p contains a point of M different from p, then p is a
limit point of M.

Problem 57 (T) Show that it is not true that if p is a limit point of a point set
M, then every closed interval containing p must contain a point of M different

from p.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 12
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Definition 58 (C) The statement that the sequence p1,p2,Dp3,- .. is a Cauchy
sequence means that if € is a positive number, then there is a positive integer
n such that if m is a positive integer and k is a positive integer, m > n, and
k > n, then the distance from p,, to py is less than e.

Theorem 59 (C) pi1,ps,ps,... is a Cauchy sequence if and only if it is true
that for each positive number d, there is a positive integer n such that if m is a
positive integer and m > n, then |p, —p| < d.

Theorem 60 (C) If the sequence pi,p2,ps,... converges to a point p, then
P1,D2,P3,- .- i a Cauchy sequence.

Theorem 61 (C) If p1,p2,ps,- . - is a Cauchy sequence, then the set {p1,p2,D3,---}
is bounded.

Theorem 62 (C) If p1,p2, D3, - - - is a Cauchy sequence, then the set {p1,p2,D3,---}
does not have two limit points.

Theorem 63 (C) If M is an infinite and bounded set of points then M has a
limit point.

Theorem 64 (C) If p1,p2,ps,- - - is a Cauchy sequence, then the sequence p1,p2, D3, - - -
converges.

Notation: We now extend our definiton of the word, “point” to include points
in the plane. We must determine from the context whether “point” means a
point on the real line or a point in the plane. We will also have to determine
from context whether the notation (x,y) denotes an open interval or the point
with coordinates x and y.

Definition 65 The statement that f is a function means that f is a set of
points (z,y) in a plane such that no vertical line contains two of them.

Definition 66 If f is a function, then by the domain of f is meant the set of
all first coordinates of points of f, and by the range of f is meant the set of all
second coordinates of points of f.

Notation: We use the usual notation that if x is a number in the domain
of f, then f(x) is the number which is the 2nd coordinate of the point of f whose
first coordinate is x. In other words, f(x) is the number such that (x,f(x)) is the
point of f having x as its 1st coordinate.

Definition 67 The statement the function f is continuous at the point p =
(z, f(z)) means that

i) p is a point on f, and

i1) if S is any open interval containing the number f(z), then there is an open
interval T containing the number x such that if t € T, and t is in the domain of

f, then f(t) € S.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 13
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Definition 68 The statement that the function f is continuous at the number
x means that z is in the domain of f and f is continuous at the point (z, f(z)).

Definition 69 The statement that f is a continuous function means that f
s a function which is continuous at each of its points.

Problem 70 Let f be the function such that f(z) = 2 for all numbers z > 5,
and f(z) =1 for all numbers z < 5.

e Show that f is not continuous at the point (5,1).

e Show that f is continuous at the point (t,2) for each number t > 5.

Problem 71 Show that if f is a function and (z, f(z)) is a point on f, and z
is not a limit point of the domain of f, then f is continuous at (z, f(x)).

Problem 72 Let f be the function such that f(z) = z2 for all numbers z. Show
that f is continuous at the point at the point (2,4).

Problem 73 If f is a function which is continuous on [a,b] and z € [a,b]

such that f(z) > 0 then there ezists a open interval, T, containing = such that
f(t) >0 forallteT.

Theorem 74 If f is a function and z1,x2,x3,... i a sequence of points in the
domain of f converging to the number x in the domain of f, and f is continuous

at (z, f(z)), then f(z1), f(z2),.-. converges to f(z).

Definition 75 If f and g are functions and there is a point common to the
domain of f and the domain of g, then f + g denotes the function h such that
for each number z in the domain of both of f and g, h(z) = f(z) + g(z).

Theorem 76 If f and g are functions and f is continuous at the point (z, f(z))
and g is continuous at the point (z,g(z)) and h = f + g, then h is continuous
at the point (z, h(z))

Theorem 77 Suppose f and g are functions having domain M and each is con-
tinuous at the point p in M. Suppose that h is a function with domain M such
that f(p)=h(p)=g(p) and for each number z in M, f(z) < h(z) < g(z). Prove h
18 continuous at p.

Theorem 78 (CA,T) If I, I>, I3, . .. is a sequence of closed intervals such that
for each positive integer n, I,,.1 C I,, then there is a point p such that if n is
any positive integer, then p is in I,,. That is, there is a point p which is in all
the closed intervals of the sequence I, 15, I3, . . ..

Theorem 79 (CA,T) If I, 15,13, ... is a sequence of closed intervals and for
each positive integer n, I,,.1 C I, the length of I,, is less than %, then there is
only one point p such that for each positive integer n, p € I,.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 14
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Theorem 80 If f is a continuous function whose domain includes the closed
interval [a,b], then the set of all numbers x € [a,b] such that f(z) > 0 is a
closed point set.

Theorem 81 If f is a continuous function whose domain includes a closed
interval [a,b] and p € [a,b], then the set of all numbers z € [a,b] such that
f(z) = f(p) is a closed point set.

Theorem 82 (CA,T) No closed interval is the union of two mutually ezclusive
closed point sets.

Problem 83 (CA) If f is a function with domain the closed interval [a,b] and
the range of f is {—1,1}, then there is a number = in [a,b] at which f is not
continuous.

Theorem 84 (CA) If f is a continuous function whose domain includes a closed
interval [a,b] and f(a) < 0 and f(b) > 0, then there is a number z between a
and b such that f(z) = 0.

Theorem 85 If f is a continuous function whose domain includes a closed in-
terval [a,b], and L is a horizontal line, and (a,f(a)) is below L and (b,f(b)) is
above L then there is a number z between a and b such that (z,f(z)) is on L.

Definition 86 The non-vertical line L is tangent to the function f at the
point P = (z,y) means that:

i) = is a limit point of the domain of f,

ii) P is a point of L, and

ii1) if A and B are non-vertical lines with the line L, ezcept for P between them,
then there are two vertical lines H and K such that if Q is a point of f between
H and K which is not P, then QQ is between A and B

Definition 87 If f is a function the statement that f has a derivative at the
number a in the domain of f means that f has a non-vertical tangent line at
the point (a, f(a)). We use the notation f'(a) to denote the slope of the line
tangent to f at the point (a, f(a)) and f'(a) is called the derivative of f at a.

Definition 88 If f is a function, the statement that f has derivative D at the
number z in the domain of f means that

i) = is a limit point of the domain of f,

i1) if (a,b) is an open interval containing D, then there is a open interval (h,k)
containing = such that if t is a number in (h,k) and in the domain of f, and

t #+ z, then
ft) - f(z)
z

o € (a,b)

As an alternative to this definition:

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 15
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Definition 89 If fis a function, the statement that f has derivative D at the
number ¢ in the domain of f means that
i) z is a limit point of the domain of f,
i) if € is a positive number, then there is a positive number & such that if t is
in the domain of f and |t — x| < § then

0=

t—zx

Definition 90 If f is a function which has a derivative at some point, then the
derivative of f is the function, denoted by f', such that for each number z at
which f has a derivative, f'(z) is the derivative of f at .

Problem 91 Use either definition of derivative to show that if f(z) = 2% +1
then f'(3) = 6.

Problem 92 Use the definition of tangent to show that if f is a function whose
domain includes (—1,1) and for each number z in (—1,1), —z2? < f(z) < z?,
then the z-azis is tangent to f at the point (0,0).

Problem 93 Use either definition of derivative to show that if f is a function
whose domain includes (—1,1) and for each number z in (—1,1), —z2 < f(z) < z2,
then the derivative of f at the point (0,0) is 0.

Theorem 94 If f is a function, and z is in the domain of f, then f does not
have two tangent lines at the point (z,f(z)).

Definition 95 If M is a pointset, then the closure of M is the set consisting
of M together with any limit points of M. It is denoted by Cl(M) or by M.

Theorem 96 If M is a point set then Cl(M) is a closed point set.

Definition 97 The statement that the point sets H amd K are disjoint or
mutually exclusive means that they have no point in common.

Theorem 98 If fis a function, and z is in the domain of f and f has a derivative
at (z,f(z)), then f is continuous at (z,f(z)).

Theorem 99 If f is a function whose domain contains [a,b], z € (a,b), and if
t € [a,b], then f(z) > f(t), and f has a derivative at z, then f'(z) = 0.

Definition 100 If [a,b] is a closed interval, by a partition of [a,b] is meant a
finite increasing sequence tg,t1,...,ty such that to = a and t, = b.

Notation: Recall that if M is a bounded point set, then either M has a
right most point or there is a first point to the right of M. We shall call this
number, whichever it is, the least upper bound of M and we will denote it
by lub(M). Similarly if a set M has a left most point or a first point to the
left of M, then we will refer to this point as the greatest lower bound of
M and denote it by glb(M). Other mathematicians might use the notation,
supremum of M and infimum of M respectively.

Copyright 1/01 W. S. Mahavier and W. T. Mahavier 16



Texas-Style Theorem Sequences

Definition 101 A bounded function is a function with bounded range.

For the next 3 definitions, assume that f is a bounded funtion with domain
the closed interval [a, b].

Definition 102 The statement that the number s is a Riemann sum for f
on [a,b] means that there is a partition tg,t1,...,t, of [a,b] and a sequence
T1,%2,. .., Ty of numbers such that

to<z1 <t1 <z2<t2<...th-1<xp <1y

and

s = if(mz)(tz —ti—1)

Definition 103 The statement that the number s is the upper Riemann sum
for f on [a,b] means that there is a partition to,t1,...,t, of [a,b] and a sequence
Y1,Y2,-..,Yn of numbers such that for each positive integer i:

yi = lub{f(z)|z € [ti-1,t]}
and

n
s= Zyz(tz —ti1)
1

Definition 104 We define a lower Riemann sum in the same way except
that for each positive integer i:

yi = glb{f(z)|z € [ti—1,t:]}

Definition 105 If F is a bounded function with domain the closed interval [a,b]
and P is a partition of [a,b], then Upf and Lpf denote the upper and lower
Riemann sums for f on [a,b] over the partition P, respectively.

Problem 106 Let F(z)=0 for each number in [0,1] except 0 and let F(0)=1.
Show that if P is a partition of [0,1], then 0 < U, f, and if € > 0 then there is a
partition P of [0,1] such that Upf < e.

Problem 107 Let F be as in the previous problem. Show that 0 is the only
lower Riemann sum for f on [0,1].

Theorem 108 If pi,p2,p3,-.. is a sequence of points in the closed interval
[a, b], then there is a point in [a,b] which is not in the sequence p1,pa2,D3,- - --

Theorem 109 If p is a limit point of the point set M then there is a sequence
of points p1,pa,ps3, ... of M, all different and none equal to p which converge to
p.
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Theorem 110 If f is a function with domain [a,b], and f is continuous at each
number in [a,b], then the range of f is a closed point set.

Theorem 111 If x1,x2,3,... is a sequence of distinct points in the closed
interval, [a,b] then the range of the sequence has a limit point.

Notation: Two often used equivalent statements are:

e If p1,po,p2,... is a sequence with infinite bounded range then it has a
convergent subsequence.

e Every infinite bounded set has a limit point.

Theorem 112 If f is a function whose domain is [a,b], and f is continuous
at each number in [a,b], then the range of f is bounded.

Definition 113 If fis a bounded function with domain the closed interval [a,b]
then the upper integral from a to b of f is the greatest lower bound of the set

of all upper Riemann sums for f on [a,b] and is denoted by y f: f- Similarly,
the lower integral from a to b of f is the least upper bound of the set of all
lower Riemann sums for f on [a,b] and is denoted by L, f: f-

Definition 114 If f is a bounded function with domain [a,b] then the statement
that f is Riemann integrable on [a,b] means that 1, f: f=u f: f. In this case
L f: f is called the Riemann integral from a to b of f and is denoted by f: f-

Theorem 115 If f is a continuous function whose domain is an closed interval
[a,b], then there is a number © € [a,b] such that if t € [a,b], then f(t) < f(z).

Theorem 116 Show that if f is is a function whose domain includes the closed
interval [a,b], and for each number z in [a,b], m < f(z) < M, and P =
to,t1,---,tn s any partition of [a,b], then Upf < M(b—a) and Lpf > m(b—a).

Theorem 117 If f is a bounded function with domain the closed interval [a,b],
and P is a partition of [a,b], then Lp(f) < Up(f).

Theorem 118 If f is a bounded function with domain [a,b], and for each num-
ber z in [a,b], f(z) > 0, and for some number z in [a,b], f(2) > 0 and f is

continuous at 2, then ¢ f: f>0.

Definition 119 The statement that the partition Q of the closed interval [a,b]
is a refinement of the partition P of [a,b] means that P C Q.

Theorem 120 If f is a bounded function with domain the closed interval [a,b]
and P is a partition of [a,b], and Q is a partition of [a,b] and Q is a refinement
of P, then Lp(f) < Lo(f), and Up(f) = Up(f)-

Theorem 121 If f is a bounded function with domain the closed interval [a,b]
then p, f:f <u f: f
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Theorem 122 If f is a continuous function with domain the closed interval
[a,b], and € is a positive number, then there is a partition x1,Za, ..., T, of the
closed interval [a,b] such that for each positive integer i not larger than n, if u
and v are two numbers in the closed interval [z;—1,x;], then |f(u) — f(v)| <e.

Theorem 123 If f is a continuous function with domain a closed interval, then
the range of f contains only one value or it is a closed interval.

Theorem 124 If f is a bounded function with domain the closed interval [a,b]
and for each positive number €, there is a partition P of [a,b] such that Up(f) —
Lp(f) <€, then f is Riemann integrable on [a,b].

Theorem 125 If f is a continuous function with domain the closed interval
[a,b] then f is Riemann integrable on [a,b].

Theorem 126 If [a,b] is a closed interval and c € (a,b) and f is integrable on
[a,c] and [c,b] and [a,b], then [ f + fcbf = f:f Hint: Show that [ f + fcbf
is not less than f: f, then show it isn’t larger.

Theorem 127 If f is a continuous function with domain the closed interval
[a,b], then there is a number c in [a,b] such that f: f=7f()(b-a).

Theorem 128 If f is a continuous function with domain the closed interval
[a,b] and F is the function such that for each number z in [a,b], F(z) = f; f,
then for each number c in [a,b] F has a derivative at ¢ and F'(c) = f(c).

Theorem 129 If f is a function with domain the closed interval [a,b], and f
has a derivative, f'(z), at each point of [a,b] and f’ is continuous at each point

in [a,b], then [* f' = f(b) — f(a).

Theorem 130 If f is a function with domain the closed interval [a,b] and there
is a sequence T1,Za,... of points in [a,b] such that for each positive integer n,
f(zn) = n, then there is a point in [a,b] at which f is not continuous.

Theorem 131 Suppose m is a nondecreasing function whose domain includes
and f has a derivative at each of its points, then there is a number ¢ in (a,b)
such that f’(c) is the same as the slope of the line jointing the two points (a,f(a))

and (b,f(b)).
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Texas-Style Theorem Sequences

3.1 Introduction

The following is a list of theorems and definitions which indicate material for a
two semester first undergraduate course in analysis. I have given such a course
fairly regularly since 1958. During much of the development of this course there
was a great deal of discussion with W. S. Mahavier.

Someone who has a good understanding of the material in these notes has
a good grounding in calculus and a good start on advanced calculus. However,
instructing students in this material has never been a top priority in my classes.
The top priority has been to help students gain an ability to do mathematics
for themselves - to learn to discover arguments and to solve problems.

I state these theorems and definitions, a few at a time, to the class. They
are given some days to try to discover a proof before I call on anyone to ask if
they have an argument. From among those who indicate they have an argument
I select one to present theirs. If a correct argument is not forthcoming (a very
common occurence) I generally ask someone else for an argument. I generally
call on students first who I feel are least likely to have a correct argument. I
never try to force a presentation from someone who will not claim to have an
argument. The course progresses slowly at first if one simply counts the number
of theorems proved.

As the course progresses often a remarkable thing happens. Some student
who was at first able to finish little or nothing starts to improve their position,
sometimes becoming the most able in the class. This sends a powerful message
to others. Such an occurence has a profound effect on the whole class and their
teacher.

Some months into the class an observer might note that the class has become
a group of working intellectuals holding profound discussions on such things as
the meaning of some aspects of language. The rate of ‘covering’ material picks
up dramatically.

3.2 Theorem sequence

Definition 1 The statement that S is a segment means that there are points
a and b so that S is the set of all points between a and b.

Definition 2 The statement that I is an interval means that there are points
a and b so that I is the set consisting of a,b and all points between a and b.

Definition 3 Suppose M is a point collection. The statement that the point p
is a limit point of M means that every segment containing p contains a point
of M different from p.

Definition 4 Suppose M is a point collection. The statement that the point p
is a boundary point of M means that every segment containing p contains a
point of M and a point not in M.
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Theorem 5 If a and b are two points, then a is a limit point of the interval
[a, b].

Theorem 6 Suppose M is a point collection consisting of exactly three points.
Then M has no limit point.

Theorem 7 If H and K are two segments which have a point in common, then
the common part of H and K is a segment.

Definition 8 Suppose p is a point and p1,p2,Dps,--- is a point sequence. The
statement that p is a sequential limit point of p1, ps, ps, ... means that if S
is a segment containing p, then there is a positive integer N so that p, is in S
for every integer n greater than N

Theorem 9 No sequence has two sequential limit points.

Definition 10 If M is a point collection, then the statement that M is bounded
above means that there is a point p so that no point of M is to the right of p.
The statement that M is bounded below means that there is a point p so that
no point of M is to the left of p. The statement that M is bounded means that
it is bounded above and bounded below.

Axiom 11 If M is a point collection which is bounded above, then M has a
least upper bound. If M is a point collection which is bounded below, then M
has a greatest lower bound.

Theorem 12 If p1,ps,ps,... is an increasing sequence which is bounded above,
then pi1,p2,Ps,-.. has a sequential limit point.

Definition 13 The statement that the point collection M is closed means that
if p is a limit point of M, then p is in M.

Theorem 14 Suppose M is a point collection which has a limit point and K
is the set to which a point belongs if and only if it is a limit point of M. Then
K is closed.

Theorem 15 Suppose each of H and K is a point collection and p is a limit
point of the union of H and K. Then p is a limit point of H or a limit point of
K.

Definition 16 The statement that the point collection sequence My, My, M3, . ..
is nested means that if n is a positive integer, then M, 1 is a subset of M,.

Theorem 17 There is a nested sequence of segments which have no common
point.

Theorem 18 FEvery infinite and bounded point collection has a limit point.
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Definition 19 The statement that the collection G of point collections covers
the point collection M means that if p is in M, then some member of G contains

p.

Theorem 20 If M is an interval and G is a collection of segments which covers
M, then some finite subcollection of G covers M.

Definition 21 The statement that the point sequence p1, pa, ps, - . - is a Cauchy
sequence means that if € is a positive number, then there is a positive integer
N so that |p, — pn| < € for every positive integer n greater than N.

Theorem 22 FEvery sequence with a sequential limit is a Cauchy sequence.

Theorem 23 If p is a limit point of the point collection M, then there is a
sequence p1, P2, P3, - - - of distinct points of M which has sequential limit point p.

Theorem 24 If each of H and K is a closed point collection and H and K
have a point in common, then the common part of H and K is closed.

Theorem 25 If 1,15, 1Is,... is a nested sequence of intervals, then I, 15, I, . ..
have a point in common.

Theorem 26 If My, Ms, Ms,... is a nested sequence of closed and bounded
point collections, then My, Ms, M3, ... have a point in common.

Theorem 27 FEvery Cauchy sequence has a sequential limit point.

Definition 28 The statement that g is a simple graph means that g is a point
collection in the plane so that no vertical line contains two points of g.

Definition 29 The statement that the simple graph g is continuous at the
point p of g means that if a and B are two horizontal lines with p between them,
then there are two vertical lines h and k with p between them so that every point
of g between h and k is also between o and 3.

Theorem 30 Suppose g is the simple graph consisting of all points (z,z?) for
all numbers . Then g is continuous at the point (1,1).

Theorem 31 Suppose that g is the simple graph consisting of all points (z,1/x)
for all numbers x > 0. Then g is continuous at each of its points.

Theorem 32 Suppose g is the simple graph consisting of all points (z,z?+1/x)
for all numbers x # 0. Then g is continuous at each of its points.

Theorem 33 Suppose g is an increasing continuous simple graph with domain
an interval and L is a horizontal line so that some point of g is above L and
some point of g is below L. Then some point of g is on L.

Theorem 34 If g is a continuous simple graph with domain an interval then
some horizontal line is above g.
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Theorem 35 If g is a continuous simple graph with domain an interval then
the range of g is a point or an interval.

Theorem 36 Suppose g is a continuous simple graph with domain an interval
and L is a horizontal line so that some point of g is above L and some point of
g 1s below L. Then some point of g is on L.

Theorem 37 Suppose g is a continuous simple graph with domain an interval.
Then there is a point of g so that no other point of g is above it.

Theorem 38 Suppose that p1,p2,p3,-.. 18 a bounded sequence. Then some
subsequence of this sequence has a sequential limit point.

Note: From here on the term ‘function’ is used in place of ‘simple graph’.

Definition 39 Suppose f is a function and c is in the domain of f. The state-
ment that f is differentiable at ¢ means that

i) ¢ is a limit point of the domain of f

ii) there is a number d so that if € > 0 there is § > 0 such that if © is in the
domain of f and 0 < |z — c| < § then

[d—(f(z) = f(c))/(z - )| <e

Theorem 40 If f is a function and c is a member of the domain of f at which
f is differentiable, then there is only one number d so that (ii) in the above
definition holds.

Theorem 41 Suppose f is a function and c is a member of the domain of f at
which f is differentiable. Then f is continuous at c.

Theorem 42 Suppose f is a function whose domain includes the segment (a, b),
¢ is a member of (a,b) at which f is differentiable and f'(c) > 0. Then there is
a segment S containing c so that

i) if ¢ isin S and z < ¢, then f(z) < f(c) and

it) if ¢ is in S and x > ¢, the f(z) > f(c).

Theorem 43 Suppose f is a function whose domain includes the segment (a,b)
and c is a member of (a,b) at which f is differentiable. Suppose also that if =
is in (a,b), then f(z) < f(c). Then f'(c) =0.

Theorem 44 Suppose [a,b] is an interval and f is a continuous function with
domain [a,b] so that f(a) = 0= f(b) and f is differentiable at each member of
(a,b). There is number c in (a,b) so that f'(c) = 0.

Definition 45 Suppose f is a function and M is a subset of the domain of f.
The statement that f is uniformly continuous on M means that if e > 0 then
there is § > 0 so that if ¢ and y are in M and |y—z| < §, then |f(z)— f(v)| < e.
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Theorem 46 Suppose f is a continuous function whose domain includes the
interval [a,b]. Then f is uniformly continuous on |a,b.

Definition 47 Suppose a < b and f is a continuous function whose domain
includes [a,b]. The statement that U is an upper sum for f on [a,b] means
that there is a positive integer n, an increasing sequence tg,t1,-..,tn, and a
nondecreasing sequence Si,83,...,8, S0 that

Z) to = a, tn =b

ii) s; is in [t;_1,t;] and f(s;) > f(z) for all z in [t; 1,%;],4=1,2,...,n, and
i) U =370 fsi)(ti —ti1)-

Lower sums are defined similarly.

Definition 48 Suppose that f is a continuous function whose domain includes
the interval [a,b]. The statement that f is integrable from a to b means that
there is one and only one number which exceeds no upper sum (for f on [a,b])
and is exzeceeded by no lower sum for f on [a,b].

Theorem 49 Suppose f is a nondecreasing function whose domain includes
the interval [a,b]. Then f is integrable from a to b.

Theorem 50 Suppose a < b and f is a continuous function whose domain
includes [a,b]. Then every lower sum for f on [a,b] is less than or equal to
every upper sum for f on [a,b].

Theorem 51 If f is a continuous function whose domain includes the interval
[a,b], the f is integrable from a to b.

Theorem 52 Suppose f is a continuous function whose domain includes the
interval [a,b] and c is in [a,b]. Then

[f+ff=l%

Theorem 53 Suppose each of f and g is a continuous function whose domain
includes the interval [a,b]. Then

[f+[g=f0+w

Theorem 54 Suppose f is a continuous function whose domain includes the
interval [a,b]. There is a number c in [a,b] so that

[ 1 =500

Theorem 55 Suppose a < b, each of f and g is a function whose domain
includes the segment (a,b) and each of a and 8 is a number. If c is in (a,b)
and each of f and g is differentiable at c, then af + Bg is differentiable at ¢ and

(af + Bg)'(c) = af'(c) + Bg' (o).
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Theorem 56 Suppose f is a continuous function with domain the interval
[a,b], c is in [a,b] and g is the function with domain [a,b] so that

g(z) = /z f for all z in [a,b].
Then ¢’ = f.

Theorem 57 Suppose f is a continuous function whose domain includes the
interval [a,b] and F is a function such that F'(z) = f(z) for all z in [a,b).
Then

b
/ f = F(b) - F(a).

Theorem 58 Suppose f is a function whose domain includes the interval [a, b]

and c is a number. Then , ,
/ cf = c/ I

Definition 59 The statement that the point collection S in the plane is a re-
gion means that there is a positive number r and a point p in the plane so that S
is the collection of all points in the plane which are distant from p by an amount
less than r.

Definition 60 Suppose M is a point collection in the plane and p is a point in
the plane. The statement that p is a limit point of M means that every region
containing p contains a point of M different from p.

Theorem 61 FEvery infinite and bounded point collection in the plane has a
limit point.

Definition 62 Suppose M is a number collection and each of f, f1, fa,-.- is
a funtion whose domain includes M. The statement that fi, f2,... converges
uniformly to f on M means that if € > 0, there is a positive integer N so that
if n is an integer greater than N, then

|7 (z) — fu(z)| < € for all x in M.

Theorem 63 Suppose [a,b] is an interval, each of f, fi, fa,... is a function
with domain [a,b] and f1, f2,. .. converges uniformly to f on [a,b]. Then
b b b

/ fl,/ fa2,... converges to/ f-

a a a
Theorem 64 Suppose [a,b] is an interval, each of f, fi, fa,... is a function
with domain [a,b] and f1, f2,... converges uniformly to f on [a,b]. If each of
f1, fa2,--. is continuous, then f is continuous.
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Theorem 65 Suppose each of [a,b] and [c,d] is an interval and f is a contin-
uwous function with domain [a,b] X [c,d]. Then f is uniformly continuous on

[a,b] % [e,d].

Definition 66 The statement that the point collection M is perfect means
that every point of M is a limit point of M.

Definition 67 A point collection, M, is countable if there is a sequence,
P1,D2, D3, - - - Such that for every m in M there is an integer, i, such that m = p;.

Theorem 68 No closed and countable number collection is perfect.

Theorem 69 Suppose M is a closed and bounded point collection in the plane
and G is a collection of regions covering M. Then some finite subcollection of
G covers M.

Theorem 70 Suppose f is a continuous function with domain [a,b] X [c,d] and
range in R. Suppose also that h is the function with domain [a,b] so that

d
h(z) = / f(z,y) dy for all z in [a,b)].
Then h is continuous.

Theorem 71 Suppose f is a continuous function with domain [a,b] X [c,d] and
range in R. Then f is integrable on [a,b] X [c,d].

Theorem 72 If f is a continuous function with domain [a,b] X [c,d] and range

in R, then
d b
| [ t@wdeay=[  f
c a [a,b] X [c,d]

Theorem 73 Suppose f is a function with domain [a,b] X [c,d] so that each
of the partial derivatives f12 and fa1 exists and is continuous on [a,b] X [c,d].
Then

fi2 = fa1.

Theorem 74 There is a closed bounded perfect number collection which con-
tains no interval.

Theorem 75 Suppose f is a continuous function with domain the interval
[a,b]. There is a function F so that F' = f.

Theorem 76 Suppose that each of u and v is a function with domain [a,b] x
[e,d] so that the partial derivatives ui,us,v1,vs ezist and are continuous on
[a,b] X [e,d]. If uy = vy there is a function F on [a,b] X [c,d] so that F; =
u, FZ =.
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Definition 77 Suppose [a,b] is an interval. A partition of [a,b] is a finite
ordered sequence, tg,t1,ta,...t, such that to = a, t, = b, and t; 1 < t; for all
i=1,2,...n

Definition 78 Suppose f is a function with domain the interval [a,b]. The
statement that the graph of f has length means that there is a number L so
that if to,t1,.-.,t, s a partition from a to b, then
n
Z[(ti —ti1)?+ (f(t:) — f(ti 1))/* < L.
i=1
The least such number L is called the length of the graph of f.

Theorem 79 Suppose f is a function with domain the interval [a,b] and f’
is continuous on [a,b]. Then the graph of f has length. Moreover, if g(z) =

. . b
(1+ f'(x)2)'/2 for all x in [a,b], then the length of the graph of f is [, 9

Theorem 80 Suppose f is a nondecreasing function on [a,b]. There is at most
a countable subset of [a,b] on which f is not continuous.

Theorem 81 If M is an uncountable set of positive numbers, there is a positive
number € so that uncountably many members of M are greater than e.

Definition 82 Suppose f is a function and y is in the domain of f. The
statement that f has a right limit ot y means that

i) y is a limit point of the set of all points in the domain of f which are to the
right of y, and

i) there is a number L so that if € > 0, then there is § > 0 such that if = is
in the domain of f and y < z < y + 4, then |f(z) — L| < €. Such a number L
is called the right limit of f at y and is denoted by f(y+). Similar statements
hold for left limits.

Theorem 83 Suppose f is a nondecreasing function with domain the segment
(a,b). Then if ¢ is in (a,b), f has right and left limits at x.

Theorem 84 Suppose f is a function and c is in the domain of f so that f
has left and right limits at ¢ and f(c+) = f(c) = f(c—). Then f is continuous
at c.

Theorem 85 Suppose f is a continuous function whose domain includes the

interval [a,b]. Then
b
< [l ia<s

Theorem 86 Suppose m is a nondecreasing function whose domain includes
the interval [a,b]. There is a unique number w so that if to,t1,...,t, is a
partition from a to b, then

Ztl 1[m(ts) — m(tiz1)] < Z [m(t;) — m(ti—1)]-
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Theorem 87 Suppose h is a function whose domain includes all positive num-
bers. The following two statements are equivalent:

i) If 1,3, ... is an unbounded increasing sequence of positive numbers, then
h(z1), h(z2),- .. converges to L, and

ii) h(z) > L as z — oo.

Theorem 88 Suppose [a,b] is an interval, c is in [a,b] and each of g1, g2, - .. is
a continuous function so that

gn(w):/ gn_1, foralln=1,2,...

Then g1, g2, - .- converges uniformly to the zero function on [a,b].

Theorem 89 If K > 0, there is L > 0 so that K™/n! < L27", for alln =
1,2,....

Theorem 90 Suppose that each of f and g is a function and c is a numbers at
which both f and g are differentiable. If c is a limit point of the intersection of
the domains of f and g, then fg is differentiable at ¢ and

(f9)'(c) = £'(c)g(c) + f(c)g' (o)

Definition 91 The statement that the point collection M has length 0 means
that if € > 0 there is a sequence Si,S2,... of segments covering M so that
[S1|+ -+ + |Sn| < € for all positive integers n.

Theorem 92 Suppose M is the set of all rational numbers in [0,1]. M has
length 0.

Theorem 93 Suppose n is a positive integer, [a,b] is an interval and f is a

function so that each of £, f', ", ..., f*Y) is continuous and has domain [a, b].
Then

£@) = 3o 10w - a)'fit+ (-1 [ £ - )t at

for all z in [a,b).

Theorem 94 Suppose that aj,as, ... is a number sequence and r is in (0,1) so
that |ant1/an| < r for all positive integers n. Then ay + a + - - - converges.

Theorem 95 Suppose that a1, as,--- is a decreasing sequence of positive num-
bers with sequential limit 0. Then

a1 —ag+az—aqg+...

CONvVeETgEs.
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Theorem 96 Suppose that f is a continuous function with domain the interval

[a,b] and c is in [a,b]. If
f@=[ 1

for all z in [a,b], then f(z) =0 for all z in [a,b].

Theorem 97 Suppose ¢ is a number and each of f and g is a function so that
g is differentiable at c, f is differentiable at g(c) and c is a limit point of the
domain of f(g). Then f(g) is differentiable at c and

(£(9))'(c) = £'(g(c))f'(c).
Theorem 98 Suppose that f is a function whose domain includes the interval

[a,b] and c is in [a,b]. If the domain of each of f',f",... includes [a,b] and
there is a number M so that |f™ ()] < M for all x in [a,b],n = 1,2,..., then

f(z) = Z FO () (z — c)i/il

for all z in [a,b).

Theorem 99 Suppose f is a function whose domain includes the interval [a, b]
and c is in (a,b). If the domain of each of each of f', f",... includes [a,b] and
there are positive numbers M and p so that

™) | < Mp"

for all z in [a,bl,n =1,2,... then there is 6 > 0 so that if |x — c| < § and z is
in [a,b], then

o0
F@) =Y fD(c)(z - o)/l
=0
Theorem 100 Suppose a1,as,... is a number sequence and |ai| + |ag| + ---
converges. Suppose also that ni,ns, ... is a sequence of positive integers so that

i) if i is a positive integer the i = n; for some positive integer j,
it) if i and j are two positive integers, then n; # n;.
Then ay, + an, + ... converges and equals a1 + a2 + ... .
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4.1 Introduction

I wrote this book for you, to give you a means to develop your thinking. The
subject is rich but simple: just a little algebra is needed. The heart of this book
is a series of problems designed to engage your deductive skills and stimulate
your ability to find patterns and make generalizations. The goal is to improve
your ability to reason; the vehicle is the study of matrices. (Matrices are part of
every branch of mathematics and are a frequent tool in, for example, economics,
sociology and physics: wherever data is organized.)

As with any exercise, you benefit from it only if you do it yourself. Some
problems are challenging. This is by design, to give you an opportunity to
expand your abilities. You will find it necessary to dedicate a certain amount
of time per week to this endeavor. If you commit some time and effort to this
project, this book will help you to think better, to organize your thoughts, and
to find mathematical computations a more natural part of everyday life.

I am excited that you have chosen to do this with me.

For review, beginning on page 36, there are some sample problems. This
subsection provides a brief summary of the basics of solving equations. If you
are confident in solving equations, you may quickly skim that subsection.

At the end of this book there are hints and answers for problems. Last you
will find my address in case you want me to look at some of your work and send
you my comments.

Work hard and keep an open mind: look for simple ways to do things. If
some problem causes difficulty, go on to other problems. Remember to come
back to the difficult problem occasionally. Be reluctant to look at the hints and
answers until you have done your best on a problem. Then compare your work
with the hints and answers. They are there for you to use when you truly need
help and also to expand your vision.

Please feel free at any time to make up your own problems and work on them.
If this book does not provide enough numerical problems, make up more, solve
them, and check your answers. If you think you see some pattern emerging, try
to prove it. These activities can be much more rewarding than just doing the
problems in order as they appear in the book.

Following is a brief summary of algebra. One of the purposes of this book is
to see how a system of matrices compares with the ordinary number system. In
particular, we will investigate the properties of matrices corresponding to the
properties listed in lines (a) through (j) in the next subsection.

Algebra

2 times 3 is written 2 - 3.
2-3=3-2. 2-4=4-2. 2-5=5-2.

The power of mathematics is in a letter representing a number. The idea we
illustrate above can be stated: if x is a number then 2-z = z-2. More generally,
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if  and y are numbers then y -z = z - y. We can omit the dot and write
yr =zy; 22x==x-2.

(z2 might be confused with z? which is z - z.)
The rest of this subsection is quite technical. You may just read it lightly.
The fundamental assumptions which we make about numbers are:

1. adding two numbers or multiplying two numbers produces a number;

2. there is a relation on numbers where a number x might be less than a
number y; this is written z < y or y > z;

3. if each of z, y and z is a number, then

(a) 2+ (y+2)=(z+y) +2
(b) the number zero has the property that 0 + z = z;
(c) —z is a number and z + (—z) = 0;
d z+y=y+uz;
(e) z(yz) = (zy)z;
(f) the number 1 has the property that 1 -z = z;
1

(g) if £ # 0 (z is not zero) then 1/z (or ) is a number and z -

1

(from this it follows that if zy = 0 then one of z and y is zero)z; '
(h) zy = yz;

(i) the number 1 is not the number zero;

() z(y+2) =2y + zz;

(k) if z is not y (z # y), then either z < y or y < z;

(1) ifz <yand y < z, then = < z;
(m) ifz <y, thenz+2z<y+z

(n) if z < y and z > 0, then z2 < yz;

(o) if S is a set of numbers and there is a number which is not less than
any member of S, then there is a least number which is not less than
any member of S;

(p) the number 1 is a counting number and if z < 1, then z is not a
counting number; if y is a counting number, then y + 1 is a counting
number and, if y < z and z < y+ 1, then z is not a counting number.

The last two “axioms,” (o) and (p), are included for mathematical completeness.
They are not necessary for our present study. Also we do very little with the
‘less than’ relation.
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Sample Problems
Problem 1. Find a number z such that 3z = 6.
Here we multiply both sides by % and find that
r=3%-(Bx)=%-(6)=2. =z=2.
Check: 3z =3-2 =6.
Problem 2. Find a number z such that 5z +4 =6 — 3z.

First we write

5z + 3z = 6 — 4; 8z = 2; e=2=1
Check: 5m+4:5-(%)+4:%+14_6:%_
6-3c=6-3. (1)=20_3_21

Problem 3. Find numbers z and y such that x +y = 6.

Here z = 1, y = 5 is one solution. z = 2, y = 4 is another. There are many
solutions. We may say that the set of all number pairs (x,y) where y = 6 — z is
the set of all solutions to the equation z + y = 6. Also we may say that the set
of all number pairs of the form (z,6 — z), where = can be any number, is the
set of all solutions.

Problem 4. Find numbers x and y such that x +y =6 and x — y = 4.

z+y = 6
z—y = 4 T = b; y=1.
2¢+0 = 10 (Adding the above.)

Check: z+y=5+1=6; z—y=5—1=4.
It is good practice, and often necessary, to check answers. It is also quite
satisfying.

Problem 5. Find numbers x and y such that 3z 4+ 4y = 7 and 6x — by = 4.

Rewrite the first equation; then subtract the second:

6r+8y = 14 10
6x—5y = 4 ¥=13°
13y = 10

Put y back into one of the original equations and solve for . Then check your
answers by substituting in the original equations.

Alternatively, to find z, we could multiply the first equation by 5 and the
second by 4:

152 +20y = 35 51 17
39z = 51
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We verify our answers:

17 10 51 40 91

17 5 10 102 50 52

and

13 13 13 13 13
There is plenty of room for error in this computation. Checking the answers
is not only psychologically rewarding but also a practical and logical necessity.

6x — b5y ==6-

Problem 6. Find numbers z and y so that bothx +y =6 andx+y=717.
Since 6 is not 7, no solution to this problem is possible.
Problem 7. Find numbers z and y so that 3z + 4y =7 and 9z + 12y = 8.

This is also impossible; we realize that the second equation says that 3z +
4y = %, and % is not 7.

Problem 8. Find a number z so that £2 = 4.
Here 2 and -2 are the answers.
Problem 9. Find a number ¢ so that 2 = —9.

Here there is no such number z.

Quadratic Formula

If ax? 4 bz + ¢ = 0 then, if b — 4ac is not negative,

o —b+vb? — dac
o 2a )

We include this formula for your reference, but we will need it seldom in this
course.

4.2 Matrices

[ ; i ] is a matrix. It is a two-by-two (2 x 2) matrix. This matrix has two

rows (across) and two columns (down). Matrices (the plural of matrix) provide
an excellent setting for our endeavor because they are useful and interesting but
we need not know very much mathematics to work with them. However, they
will provide the practice and challenge we seek.

The product of [ 12 ] and [ 5> 6 ] is

3 4 7 8
1-54+2-7 1-6+2-8 19 22
3-54+4-7 3-6+4-8 :[43 50:|'
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The product of [ ‘Z Z ] and [ Z z ] is

[a-w—i—b-y a-z+b-z

cowtd-y coztd oz ] We write this as follows:

a b w x| |aew+by az+bz
c d y 2| | cwt+dy cx+dz |’

Addition of matrices is the way it ought to be:
a b n w x| |[at+tw btz
c d y z| | ct+ty d+z |’

(To multiply in the same manner would render the subject quite uninteresting.)
If we add two matrices, we get a matrix. If we multiply two matrices, we get a

SIER DI,
el

Problem 2. Write down some pairs of matrices and multiply them.

Problem 1.

(a) Multiply these matrices ([ ;
1
3

(b) Multiply these matrices [

. . 1 2 w x
Problem 3. Multiply these matrices [ 3 4 ] [ vz ]

1

Problem 4. Cube the matriz [ é 1 ] (M®=M-M-M.)

Problem 5. Find, either by guessing or solving equations, a 2 X 2 matriz
[ wor ] such that
y oz
w T w oz | |11
y 2z y z| [0 1]
, , 11
That is, find a square root for the matriz 0 .

Problem 6. Is there a formula for the powers (1,2,3,4, ...) of [ (1) 1 ] ?

Problem 7. Find, perhaps by guessing, a 2 X 2 matriz whose cube is the matriz
11
o 1)

Problem 8. Is there a formula for the powers (1,2,3,4, ...) of [ _12 _63 ] ?
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Problem 9. Can you find a matriz whose cube is [ _12 _63 ] ?

Problem 10. Can you find a matriz whose cube is [ (1] ;j ] ?

Problem 11. Is there a 2 x 2 matriz which multiplies like the number one?

In other words, find a 2 X 2 matriz [ w z ] such that, for each 2 X 2 matrizc

1]
I EHR ]

Problem 12. Is there a formula for the powers (1,2,3,4, ...) of [ _13 _93 ] ?

Q =

]ifd:bc?
]?

Problem 16. Find a 2 x 2 matriz M such that M? = —M.

SIS

Problem 13. Is there a formula for the powers of [

SIS

Problem 14. Is there a formula for the powers of [ (1)

Problem 15. Find a 2 x 2 matriz M such that M? = M.

Problem 17. Let M be the matriz Z 2 . Let N be the matriz 2 ‘j

Show that both M + N and MN are similar in form to the original matrices.

Problem 18. Let M be the matriz 8 Z . Let N be the matriz 8 i ;
Show that both M + N and MN are similar in form to the original matrices.

. [a b] e f]
Problem 19. Let M be the matriz 0 d | Let N be the matriz 0 h

Show that both M + N and MN are similar in form to the original matrices.

If Problem 11 has eluded you so far, try again.

4.3 Solving Equations

Problem 20. Multiply [ ; 121 ] times [ l; z ]
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Problem 21. Find a 2 X 2 matriz [ Z z ] such that

EHIFE b

Problem 22. Find a 2 X 2 matriz [ l:; j ] such that

Al el

Problem 23. Find a 2 X 2 matriz [ l; z ] such that
3 4 w T | 1 -3
2 5 y z| | -2 6 |°
. . w T
Problem 24. Find a 2 X 2 matriz [ vz ] such that

ER PRI

Problem 25. Can you change the matriz after the equal sign in the problem

above so that there is a matriz | © z ] that works?

Problem 26. Can you change the first matriz in problem 24 and still have no
solution to the equation?

Problem 27. By solving equations, find a 2 X 2 matriz [ Z z ] such that

tHIeHEth!

Problem 28. By solving equations, find a 2 X 2 matric [ l:; j ] whose cube
is the matriz [ (1) ! ] .

Please feel free at any time to make up your own problems and work on
them. If ’'m not giving you enough numerical problems, make up some more,
solve them and check your answers. On the other hand, if you see some pattern
emerging, see if you can prove that your pattern is correct. These activities can
be much more rewarding than just doing the next problem.
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4.4 The Matrix System

In this subsection we ask how much our system of matrices behaves like the
number system. We listed the fundamental properties of the number system
in the introduction. You might want to look at (a) through (j) on page 35.
This section addresses the question: what are the corresponding properties of
matrices?

Problem 29. Is there a 2 X 2 matriz which is like the number zero? In other
b

words, find a 2 X 2 matriz 1;/) j such that, for each 2 X 2 matriz dl’

ooy 2]-[ea]

The problem above corresponds to property (b) on page 35. Properties (a),
(c) and (d) refer only to addition, so they carry directly over to our matrix
setting. Thus we turn to those properties which pertain to multiplication.

Problem 30. (Property f.) Is there a 2 X 2 matriz which is like the number
one? In other words, find a 2 X 2 matriz [ l; z ] such that, for each 2 x 2

EHIERE !

triz | @
matriz | |,
Problem 31. (Property j.) Can you show that if each of A, B and Cis a 2 X 2
matriz, then

A(B+C)=AB+ AC?
(Here you want to use twelve letters.)

Problem 32. (Property h.) Can you show that if each of A and B is a 2 x 2
matriz, then AB = BA?

Problem 33. (Property e.) Can you show that if each of A, B and C is a2 x 2
matriz then
A(BC) = (AB)C?

Problem 34. (Property g.) Can you show that if the product of the matrices

A and B is the zero matriz 8 g , then either A is the zero matriz or B is
the zero matriz?
Problem 35. Is [ (1] (1] ] the only answer for problem 307 Call this answer L

Then for each 2 X 2 matriz A,

TA=A=AI
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Suppose that J also is a 2 X 2 matriz such that if A is a 2 X 2 matriz then
JA=A=AJ.

Can we show that I = J?

(1] 2 is called the 2 x 2 identity matrix.

We have seen that matrices behave somewhat like numbers. Matrices fail to
have the commutative property (zy = yz) (see Problem 32). Also in the system
of 2 X 2 matrices there are divisors of zero: we can have two non-zero matrices
whose product is the zero matrix (see Problem 34).

We take up the notion of reciprocals (property g) in the next section. With
matrices it is customary to use the word inverse instead of reciprocal.

The matrix

4.5 Inverses

Problem 36. Find a 2 X 2 matriz [ l:; j ] such that

w
Y
Problem 37. Find a 2 X 2 matriz [

woz ] such that
Yy oz
w T 11| (10
y oz 01| |0 1]
Problem 38. Find a 2 X 2 matriz [ l:; j ] such that

ol -l vl

Problem 39. Find a 2 X 2 matriz [ l:; j ] such that

FHIERI RN

Problem 40. Find a 2 X 2 matriz [ Z z ] such that

I T
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Problem 41. Find a 2 X 2 matriz [ ] such that
w T 3 4 1 0
Y 2 5 0 1]°
Problem 42. Find a 2 X 2 matriz [ ] such that

B IF R

Problem 43. Find a 2 X 2 matriz [ l; Z ] such that

MR R R

If you see some pattern emerging, write this down in the form of a problem
and see if you can prove that you are right.

In the first three pairs of problems in this section we started with a matrix
A and found a matrix B so that AB = I and BA = I. Here I represents the
(1] (1] ] . In this
case we say that B is the inverse of A. We could use the term reciprocal, but we
wish to remember that we are not in the number system where we can write i

identity matrix which acts like the number one; that is, I =

It is customary to write the inverse of A as A~!. Instead of 3 we must write
either CA~1 or A~1C, because these products mlght be different.
Let A be the matrix [ g ;1 ] In Problems 40 and 41 we saw that A=1 =
5/7 —4/7 . 1 -3 )
[ _2/7  3)7 ] Let K be the matrix [ _9 6 ] Now Problem 23 reads:
Find a matrix X such that AX = K. This is like the first sample problem on
page 36, isn’t it? Multiply both sides (on the left) by A~ 1:

AT'AX = AT'K
IX = A'K
X = A'K.
Multiply A=! by K to obtain the answer to Problem 23.

Problem 44. Suppose that each of A and B is a 2 x 2 matriz and AB = L. Is
it true that BA = I? (Unless we know this we must continue to test our alleged
inverse on both sides.)

Problem 45. Are there matrices which are their own inverses?

Problem 46. Find the inverse of [ ; 3 ]
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-3
2 11

[y

Problem 47. Find the inverse of [ _1

SRS

Problem 48. Show that if d # bc then [ i ] has an inverse.

1

Problem 49. Show that [
¢ be

] has no inverse.

Problem 50. Write the inverse of [ ‘Z ] when it has one.

d

Problem 51. When does [ i ] fail to have an inverse?

d

Problem 52. Write the inverse of [ 2 ] when it has one.

d
0 b . )
Problem 53. When does c d fail to have an inverse?

a b

Problem 54. Show that [ ] has no inverse.
ma mb

ma

Problem 55. Show that [ Ccl c ] has no inverse.

Problem 56. Show that if ad — bc = 0 then [ c d

a b .
has no inverse.

Problem 57. Write the inverse of [ c d

a b ] when it has one.

Now you can do problem 44.

4.6 Miscellaneous Problems

I hope that you have enjoyed the first four sections. In this section we investige
several different kinds of problems. These problems will motivate the subsequent
sections.

These problems might be more thought-provoking than earlier problems. In
each problem ask yourself whether you have found all the answers. It is possible
that you find some of these problems difficult. You need not quit. Even if
you have serious trouble here you can go on and benefit from the subsequent
sections. For this section, do what is reasonable for you. Try not to expect
either too much or too little from yourself.
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In Problems 56 and 57 we saw that the number ad — bc determines when the

matrix [ z Z ] has an inverse. There is no inverse when ad — bc = 0. When

ad — bc # 0 there is an inverse. This number, ad — be, is called the determinant

a b
of[c d]'

Problem 58. What is the determinant of [ ; i ] 2 Does this matriz have an
inverse?
Problem 59. What is the determinant of [ :2,) 3 ] 2 Does this matriz have an

inverse?

Problem 60. What is the product of [ ; i ] and :2,) 3 ? What is the

determinant of that product? What do you guess from these calculations?

Problem 61. Show that the determinant of[ Z Z ] [ 1;) iz ] is (ad—be)(wz—

zy).

This says that, for 2 x 2 matrices, the determinant of the product of two
matrices is the product of the individual determinants.

The following problem shows that if the determinant is zero then the matrix
fails to have an inverse.

a b

Problem 62. Suppose that A = [ c d ] and that ad —bc = 0 and that A has

an inverse A~'. Find a contradiction.
Problem 63. What is the determinant of the matriz in problem 54¢
Problem 64. What is the determinant of the matriz in problem 55¢

Problem 65. We have a matriz which acts like the number 1. How many
square roots can you find for that matriz? In other words, how many matrices

[ w z ] can you find so that

HRIFRN

Problem 66. Is [ 0 (1] ] the only answer for problem 112 Call this answer L

Then for each 2 x 2 matriz A,

TA=A=AI
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Suppose that J is a 2 X 2 matriz such that if A is a 2 X 2 matriz then
JA=A=AJ.

Show that I = J.

Problem 67. How many square roots can you find for the zero matriz?

Problem 68. How many matrices M can you find where
M? = M? Can you find three?

Problem 69. How many matrices M can you find where
M? = —M? Can you find three?

Problem 70. Solve equations to find all the answers for problem 67.
Problem 71. Solve equations to find all the answers for problem 68.

Problem 72. Solve equations to find all the answers for problem 69.

Problem 73. Find a square root for the matriz _01 (1) ] .

Problem 74. Find a square root for the matriz 3 g ] .

Problem 75. Find a square root for the matriz

[ 7 10
15 22 |

Problem 76. Does every 2 X 2 matriz have a square root?
Problem 77. Does every 2 X 2 matriz have a cube root?

Problem 78. Can you multiply these two matrices?

1 2 5 6 9 10
3 4 7 2 1 2
1 21 1 -1 -1

Problem 79. Is there a 3 x 3 matriz which is like the number 12

4.7 Commuting Matrices

Problem 80. How many matrices [ 1;/) z ] can you find so that

PRI ERN S
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A matrix [ Z) z ] as above is said to commute with the matrix [ (1) 1 ];
the product one way is the same as the product the other way.
, . , , 11
Problem 81. Find a matriz which does not commute with the matriz 01l

Problem 82. Find all matrices [ l; Z ] such that

RN ER 1

That is, find all matrices which commute with [ (1) 1 ]

Let A be the matrix [ é } ] Let R be a square root of A (that is, Ris a

2 x 2 matrix such that R? = A). Then
RA=R-R*=R-R-R=R?-R=AR.

In summary, RA = AR; R commutes with A. That is, each square root of
A must commute with A. Thus, using the results of the preceding problem,
Problem 5 is simplified to the following.

6 alle ul=lo 1)

Problem 84. Use Problem 82 to find a cube root for

Problem 83. Find a 2 X 2 matriz [ w f; ] such that

é } . That is, use
the fact that the cube root must commute with the original matriz: it must be of
h w oz

e form 0 w

Problem 85. Find all matrices [ l; Z ] such that

PR

Problem 86. How many matrices [ z ] can you find so that

oot 0l
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b

.| a
for every matriz [ c d

] 2 (You have to write [ Z) Z ] first. Then I write

[ Z Z ], and your matrix has to work.)

Problem 87. Find all matrices [ Z z ] such that

3 oleal= e ]l t]

.| a b
for every matriz [ e d ]

Problem 88. How much work is it to find all 3 X 3 matrices which commute
with every 3 x 3 matriz?

=N
| I

Problem 89. Find all matrices which commute with [ (1]

Problem 90. Find all matrices which commute with [

=N
I

0

Problem 91. Show that if AB = BA then A3B = BAS3.

Problem 92. Find all matrices which commute with [ _12 _63 ]

Problem 93. Find all matrices which commute with [ g i ]

Z , find all matrices which commute

with it. Your answer will have the letters a, b, ¢ and d in it.

Problem 94. Given a single matriz

, 4/14 -2/14 .5 2
Problem 95. Show that the inverse [ _3/14 5/14 ] of the matriz [ 3 4 ]

is of the form [ g wi z ] (See problem 93.)
2 2

Problem 96. Show that the matriz [ g i ] itself is of the form [ ;ui 3: ] .

Problem 97. Show that the square of [ g i ] is of the form [ ;Ui x z ]
2 2

Problem 98. Show that [ é (1] ] is of the form [ z r ]
2

_z
w—3
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3 4 82 o _z

2 2
Problem 100. Show that if each of A, B and C is a 2 x 2 matriz and AB =
BA and AC = CA and D = B + C then

Problem 99. Let A be [ 5 2 ] Show that A+ A? is of the form [ 31,1; x z ]

AD = DA.

Problem 101. Show that if each of A, B and Cis a 2 x 2 matriz and AB =
BA and AC = CA and D = BC then

AD = DA.

) q r pq pr
If p is a number, then byp[ s ¢ ] Wwe mean [ ps pt ]

Problem 102. Show that if p is a number then pI commutes with [ ‘cz b ]

d
5 2 . ,
Problem 103. Let A be 3 4 | asin several earlier problems. Suppose that
each of p and q is a number. Show that pI + qA commutes with A.
5

Problem 104. Let A be [ 3 4

] as in several earlier problems. Suppose that

each of p and q is a number. Show that pI + qA is of the form [ z w f z ] .
2 2

(Write w and z in terms of p and q.)

You have done a hundred problems. Congratulations!

4.8 Matrix Polynomials

5 2

3 4

(a) Find numbers p and q such that A% = pA + qI (I is the identity matriz).
(b) Find numbers p and q such that A3 = pA + qI.

(c) Find numbers p and q such that A* = pA+ qI.

Problem 105. Let A be [

0 1
(a) Find numbers p and q such that A2 = pA + qI.
(b) Find numbers p and q such that A3 = pA + qI.
(c) Find numbers p and q such that A* = pA + qI.

Problem 106. Let A be [ 12 ]

3 4
(a) Find numbers p and q such that A2 = pA + qI.
(b) Find numbers p and q such that A3 = pA + qlI.
(c) Find numbers p and q such that A* = pA + qI.

Problem 107. Let A be [ L2 ]
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2

1
Problem 108. Let A be [ 3 11

pA+ql.

]. Guess numbers p and q such that A% =

d
(a) Guess numbers p and q such that A2 = pA + qI.
(b) Show that your guess is correct.

Problem 109. Let A be [ ‘cz b ]

The preceding problem finds numbers p and ¢ such that A2 = pA + ¢I or
A? — pA — qI = 0. (Here O stands for the zero matrix.) In different terms, we
have shown that each 2 x 2 matrix satisfies a polynomial of degree 2. Here the
polynomial is P(z) = 22 — pz — q. The word satisfies means that the matrix

1 2
3 11 ],then

A satisfies the polynomial P(z) = z? — 12z + 5. This means that P(A4) =
A% —12A+ 51 =0.
If you wish, you may wonder about the situation for 3 x 3 matrices now.

makes the polynomial zero. In problem 108 we see that if A is [

Problem 110. Let A be [ (1] i ] Problem 106 says that
A?2 =241,
A3 =34 -2I,

A* = 4A — 31. What should A® be? What should A™ be?

Problem 111. Let A be a matriz such that A2 = 2A — I. Suppose that k is a
counting number so that
A*F = kA — (k—1)I. Show that A**! = (k+1)A — kI.

Problem 112. Let A be (1) i ], so that A2 = 2A — I. Is it true that if n is
a counting number then A" =nA— (n—1)I?

Problem 113. Let A be [ (1] ? ] Does the formula obtained above hold if n
is 1?2 If n is 0 (here A° should mean the identity matriz 1)? If n is -1 (do we

get the inverse of A)? If n is 3 (do we get a square oot of A)?

Problem 114. Let A be [ (2) :;) ] Proceed as in problems 106, 110, 111 and
112 and obtain a formula for the powers of A.
Problem 115. Let A be [ (2) :;) ], as above. Does the formula obtained in the
last problem hold if nis 12 If nis 02 If nis -1?2 If n is %?

Let A be [ } f . Can we obtain a formula for the powers of A? I believe

there is one, but it seems to be out of my reach.
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Problem 116. Let A be [ } i ], as above. Many matrices (perhaps all the
powers of A) can be written in the form pA + qI. Can every 2 X 2 matriz be

written in this form?

Problem 117. Let A be a 2 x 2 matriz such that A*> = 2A — 31.
(a) Show that A has an inverse.
(b) Write a specific matriz A such that A2 =2A — 31.

Problem 118. Let A be [ g 4 ] as in many earlier problems. Suppose that
each of w and z is a number. Show that [ ; w f z ] s of the form pA+ql.
2 2

(Write p and q in terms of w and z.)

From this last problem and Problem 104, we see that the only matrices which
commute with [ g i ] are those of the form pA + qI, where A is [ g i ],
itself.

Problem 119. Let A be _12 _63 . According to the method used in ths
section, find a formula for the powers of A.

1 11

Problem 120. Let Abe | 0 1 1 |. Find numbers p and q such that A2 =
0 01

pA+ql. (I is the 3 x 3 identity matriz. See Problem 79.)
[1 1 1]

Problem 121. Let Abe | 0 1 1 |. Find numbers p, q and r such that
| 0 0 1 |

A3 =pA? + qA+rl.
[1 2 5]

Problem 122. Let Abe | 3 4 7 Find numbers p, q and r such that

1 21

A3 =pA% 4+ qA +rl.

Now, perhaps, it seems that if A is a 3 X 3 matrix then its third power can
be written in terms of the three lesser powers:

A% =pA® +qA+rl.

It is not easy to do this using nine letters in A. However, when we did Problem
109, the coeflicient q of I was the determinant of A. So it seems that if we
did this general problem for 3 x 3 matrices then we would find the general
determinant for 3 x 3 matrices. It is easy to guess p, I think. You might try this
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problem now. It sure would make work on the inverses of 3 x 3 matrices easier
if we knew their determinants.

We have done enough, now, to suspect that if A is a 4 X 4 matrix then its
fourth power can be written in terms of the four lesser powers (including A°,
which is the 4 x 4 identity matrix). You might try this for your favorite 4 x 4
matrix.

Problem 123. Let A be a 2 x 2 matriz such that A2 = 4A — 31. With the goal
in mind of determining numbers p, and g, so that, for each counting number
n,

A" =ppA+qnl,

compute at least six powers of A in terms of A and I. Write out the string of
coefficients of A in these and the string of coefficients of I. Find a pattern.

Problem 124. Use what we have learned to write, in terms of A and I, the
square root of a 2 x 2 matriz A such that A2 = 4A —31. Show that your answer
works.

Care to try the cube root? This would be a little more difficult, but obtaining
the inverse this way shouldn’t be hard.

Problem 125. Is there a 2 x 2 matriz M such that M? is not the zero matriz
but M3 is the zero matriz?

Problem 126. Is there a 3 x 3 matriz M such that M? is not the zero matriz
but M3 is the zero matriz?

We sure have come a long way together. I hope you are profiting from our
journey.

4.9 Complex Numbers

We have not mentioned complex numbers thus far. Indeed we have not allowed
them. We said that there is no number whose square is -9.

-1 0
0 -1
root. If so, we were frustrated in our attempt to show that there is no square
root. There was good reason for this frustration.

We might have guessed that [ is a matrix which has no square

Problem 127. Find a square root for [ _(1) _(1) ]

Take either your simplest answer for Problem 127 or else take [ (1] _é ]

and denote that matrix by the letter 7. I have I = [ é (1] ] and ¢ = [ 2 _(1] ]

Either your choice or mine for i yields i = —1I.
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Complex numbers are usually written a + bi. So we will write al + bi (i as
above, or else your choice) and we will have a system of matrices which, we hope,
behaves the way complex numbers are supposed to behave. This system consists

of all matrices of the form [ @ _2 ] (my form). Now you don’t have to use

b
your “imagination” to know that there are complex numbers. Our matrices are
“real”, not “imaginary”.

Problem 128. Let M be al + bi and N be clI+di.
(a) Show that MN is of the same form.
(b) Show that MN = NM.

Problem 129. Show that if al + bi is not the zero matriz then it has an inverse.
, 0 -1

Problem 130. Find a square root for 1 e

Problem 131. Find a square root for al+bi. (Here we suppose that b # 0.)

Problem 132. Find all square roots of —1I.

Problem 133. Show that if YT commutes with 2 =3 then | ¥ °
Yy oz 3 2 Yy oz

is a complex number, in the sense that z = w and x = —y.

4.10 Similarity

Problem 134. Find a matriz [ Z) Z ], which has an inverse, such that
01 w |lw =z 00
00 Y Ty =z 1 0|

Problem 135. Find a matriz [ 1;) , which has an inverse, such that
10 w |l w oz 00
00 Y Ty =z 01|

Problem 136. Find a matriz [ Z) , which has an inverse, such that
1 0 w | |w =z 01
00 y z| |y =z 0 0|
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A matrix A is said to be similar to a matrix B provided that there is a
matrix M, having an inverse, such that

AM = MB

(alternatively, B = M~1AM).

The use of the word similar for this purpose is bothersome to some peo-
ple. We hope that you agree that there is some “similarity” between the given
matrices of Problem 134 and also some between the matrices given in Problem
135. Perhaps you will also agree that there is an essential difference between
the matrices given in Problem 136. In any event, we will use the word similar
as in the last paragraph. This is standard in mathematics.

Problem 137. Show that is A and B are 2 X 2 matrices which are similar then
the determinant of A is the same as the determinant of B.

Problem 138. Find a matriz which is similar to [ ; i ]

Problem 139. Which matrices are similar to the identity matriz?

Problem 140. The matriz [ 25 _32 ] is a matriz whose square is —I (Prob-

3
lem 132). Is this matriz similar to [ 0 _01 ] 2

1
Problem 141. Show that if A is [ 3 Z ] and B is [f 3 ] and B =
M~—1AM then

Problem 142. Is the matriz [ ] similar to a matriz of the form [ f a ] ?

p

[S2 0 V]

1
3

Problem 143. Is every matriz [ Z ] similar to a matriz of the form

3]

Problem 144. Show that if A is similar to B then A? is similar to B2.

a
Cc

Problem 145. Show that if A is similar to B and R?2 = A then B has a square
T00t.

Problem 146. Show that if A is similar to B and R® = A then B has a cube
T00t.
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Following is the answer for problem 78 which we have placed on this other-
wise blank page.

1-6+2-24+5-1 1-942-14+5-(—-1) 1-10+2-2+5-(-1)

3.6+4-2+7-1 3-9+44-1+47-(—1) 3-10+4-247-(—1)
1-64+2-241-1 1-942-141-(=1) 1-10+2-2+1-(-1)

15 6 9
=133 24 31
11 10 13

4.11 Square Roots

7 10

15 22 ] in Problem 75. Even though

We tried to get the square root of [

we knew that this matrix was the square of , we found the square

1 2
3 4
root difficult to solve for. In our solution the determinant was crucial.
We have found square roots of the zero matrix (Problem 70). Let us resume
our study of square roots by looking at nonzero matrices with determinant zero.
Our goal in this section is to find out exactly which 2 x 2 matrices have

square roots.

The equations for the square root of [ z Z ] are

w4 zy=a (w+2)z=>
y(w+2)=c zy+ 2% =d.

o o
| I

Problem 147. Under what condition on the numbers a and ¢ does [ Ccl

have a square root?

Problem 148. Under what condition on the numbers b and d does [ g

SIS
I

have a square root?

Now we wish to discover when [ Z j ] has a square root.

Problem 149. Does ; g ] have a square root?
Problem 150. Does g :3 ] have a square root?
[ —2 3
Problem 151. Does _9 3 have a square root?
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Can you say what condition on a and d will make [ Z j ] have a square

root?

Problem 152. Show that if [ Z Z ] has a square root then
a+d>0.

] has a square root.

QU K

Problem 153. Show that if a + d > 0 then [ Z

Problem 154. Show that if a + mb > 0 then [ a b ] has a square root.
ma mb
Problem 155. Show that if a +d > 0 and ad — bc = 0 then [ Ccl 2 ] has a

square Toot.

. . b
At this point we might wonder whether [ 3 d ] has a square root whenever

a+d > 0. Can you think of a problem which we have done which will settle
this matter for us?

1 2
The matrix 3 4 ] has a negative determinant, so it has no square root

even though 1+4 > 0. Also Problem 127 tells us of a matrix [ Ccl 2 ] , having
a square root, where a + d = —2. The determinant is 1.

-1 0
Problem 156. Does 0 _2 have a square root?

Problem 157. When does [ z ] have a square root?

d

The results of the preceeding problem fulfill the mathematical goal I had in
writing this book. We know precisely which 2 x 2 matrices have square roots.

Problem 158. When does [ Z b ] have a fourth root?

d

If you have made it this far, you are ready for serious college math. I only
wish I could tell you that they will proceed at a reasonable speed.

4.12 Cube Roots

Does every 2 x 2 matrix have a cube root? We have already asked this question
in Problem 77. In case you still would like to work some more on this question
we warn you that we give the answer away in the next problem.
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Since we did so well with matrices with determinant zero in the last section,
we will begin there, and we will use the last section as an outline. Let us see
how far we can go toward seeing which 2 x 2 matrices have cube roots.

The equations for the cube root of [ ‘cz b ] are

d
w? +2wzy +zyz =a z(w? + zy + wz+22) =b
y(w? + 2y +wz+22)=c wzy + 2zyz + 2% = d.

(SRS
(== ]
I

Problem 159. Under what condition on the numbers a and ¢ does [

have a cube root?

Problem 160. Under what condition on the numbers b and d does [ g

SIS
I

have a cube root?

Problem 161. Under what condition on the numbers a, b and m does [ a b ]
ma mb

have a cube root?

o

Problem 162. Under what condition on the numbers a, b and d does [ a Z ]

have a cube root?

Problem 163. Cube [ 21 ]

1 2
(w oz ]’ [14 13 ]
Problem 164. Show that if Yz = 13 14 | then
r=19y and z = w.
- - 3 - -
Ll w T 14 13
Problem 165. Show that if y 2| 7|13 14 then
(w+z)3 =217
- - 3 - -
Ll w oz 14 13
Problem 166. Show that if v oz |13 14| then

4w® — 18w? + 27w — 14 = 0 and 423 — 1822 + 27z — 13 = 0.

We can see that w = 2 and x = 1 satisfy the equations above, but this is not
14 13
13 14
honestly, that is, without already knowing the answer from Problem 163, we
would have to really solve one of the cubic equations in the problem above.
Thus we can see that if the problem were any harder, we would be in serious
trouble.

The problem of determining which 2 x 2 matrices have cube roots can be
finished. We have made a start. To finish we would have to do some fancy
algebra and know something about cubics or else we would need to devise a
different approach to the problem. Similarity is a valuable tool here.

really ‘solving’ the equations. If we were to find the cube root of
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4.13 Inverses For 3 x 3 Matrices

As we worked through this book we have been working toward independence. I
hope that you now feel some confidence in your abilities. As I end my part of
your journey, I will give just a little direction for your next few steps.

In attacking the general problem of finding inverses for 3 x 3 matrices, there
are two activities possible. The easier of these is finding classes of 3 x 3 matrices
which have no inverse. In Section 4.5 we found 2 x 2 matrices which did not
have inverses and that can be a guide here.

The second activity is that of finding a general inverse for a 3 x 3 matrix. I
will suggest four ways to attack this problem.

I. The quickest, and perhaps the hardest, way is just to attack the problem
head-on and solve the general equations. Once you have done three equations,
the other six should not be too bad. We have

a b ¢ r s t 1 00
d e u v w(| =100
g h i T Yy z 0 01
Solve for the letters in the second matrix.
II. A second method is to start with easy matrices and find their inverses.
In the end we hope to guess a general formula. An intermediate step in this

a b ¢
process might be to find the inverse of | 0 e f
0 0 1
a b ¢
III. Let Abe | d e f |.In Section 4.8 we began the problem of finding
g h 1

numbers p, g and r such that A% = pA2% + gA + rI. We had a guess for p and
thought that r might be the determinant of A. If we finish this problem we will
have the determinant of A and this should be a help toward the general inverse.
Problem 117 shows how to find A1 if 7 # 0.

IV. We might try some systematic guessing in the second matrix so that we
have a product like

a b ¢ r s t k 0 0
d e f u v w(| =0k O
g h i T Yy z 0 0 k

Then, if we divide the second matrix by k, it should be the inverse of the first
matrix.

Knowing how to get the inverse for a 3 x 3 matrix makes the problem of
finding an inverse for a 4 x 4 identity matrix feasible. We recommend approach
IV for 4 x 4 matrices (we need to study the numerators in our 3 x 3 inverse).

Thanks for going through this with me. I beleive that you are now ready for
the kind of thinking that majoring in mathematics or computers demands.
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4.14 Hints

Section 4.2 Multiplication

1.

8.

9.

Be neat. Be orderly. Be patient. We multiply inside the parentheses first.

. Do some. You will learn something.

. Keep the letters.

M3® = M -M - M. Compute
(Lo +]ls v D)1o 1]
01 01 0 1|
Guess.
Compute several powers.

Does the formula for the last problem help?
Compute several powers.

Does the formula for the last problem help?

10. You can guess this.

11.
12.
13.
14.
15.

16.

17.

18.M—|—N:[

Guess. Try various numbers for w, x, y and z.
Compute several powers.

This is like problems 8 and 12.

Write some powers.

You can guess some.

You can guess some.

| a+c b+d
M+N_[b+d a—i—c]'

at+c b+d
0 a+c |’
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Section 4.3 Solving Equations

20. Keep the letters.

wt+y=1 z+2=2
2L y=3 z=11.
22. Here again we have two equations with w and y and two with = and z:

w+2y=1 3w+1ly=0

Rewrite the first equation and subtract the second:

3w+ 6y = 3 3
3dw+lly = 0 (y= —5
by = 3

Put y back into one of the original equations and solve for w. Then check. Treat
z and z similarly.

23. Solve equations and check your answer.
24. Solve equations and get a headache.

witzy=1 (w+z2)z=1

27 y(w+2)=0 zy +22=1.

28. Note that the second and third equations still factor and that the compli-
cated factor appears in both.

Section 4.4 The Matrix System
29. You guessed it!

30. You can guess this.

31. Be neat. Be orderly. Be patient. Add first and compute

(iRl

Do the two multiplications, then add:
a b e f L@ b i j
c d g h c d k £ |

32. How are you doing? If you cannot do this problem, there is a fundamental
question: Whose fault is this? (This is a multiple choice question.) Pick A or
B:

A) Yours B) The problem’s.
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33. We hope that this is like problem 31. Use twelve letters again.

34. As in Hint 32 this is a multiple choice question. Do you pick A or B this
time?

35. This problem is easy if you look at it right.

Section 4.5 Inverses

36. Solve equations or guess.
37. Solve equations or guess.
38. Solve equations.
39. Guess or solve equations.
40. Guess or solve equations.
41. Guess or solve equations.
42. Does this remind you of Problem 247
44. This problem is hard.
45. You can guess a couple.
46. Check that the inverse works on both sides.
47. Check both sides.
[1 b][w m]:[l 0]
c d Yy 2z 0 1]
w+by=1 z+bz=0
cw+dy=0 cxt+dz=1

4

@

Multiply the first equation by ¢ and subtract the third:

cc+chy = ¢ c e
cx—dy = 0 y= YT T
(cb—d)y = c - -0

49. We hope that this is no harder than Problem 42.
50. Does Problem 48 help here?
51. The last problem should tell you this.

52. This is easier. A few examples should tell you how to do this problem and
the next.
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a b w T 10 . .
54. [ am. bm ] [ ] = [ 0 1 ] This produces contradictory equa-

tions.
55. Have you been checking your inverses on both sides?
56. Can you survive these equations?

57. Do the earlier inverses in this section tell you the general answer? Alterna-
tively, can you solve the equations, keeping a, b, ¢ and d and using those earlier
problems as a guide?

Section 4.6 Problems

58.1-4-2-3.

59. 14 -9.

60. [ 188 ;; ] . The answers to the preceding problems were -2 and 5.

61. Compute the determinant of

aw+by ax+ bz
cw+dy crx+dz |’

62. Let = be the determinant of A. Let y be the determinant of A~1.

65. This is the same as asking that [ l; iz ] be its own inverse. There are

four equations:
w4 zy=1 (w+2)z=0
y(w+2)=0 zy+22 =1

We can do the two cases suggested by problem 61 or else the following two
cases:

Lw+2=0 ILw+z#0.
Get two sheets of paper and do these separately.

66. This problem is about I and J. Which matrix do you pick for A in each
equation?

67. You can find more than just the zero matrix itself.
68. Can you find ten?

69. Can you find ten?
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70. As in problem 65 we have four equations. Which two cases will you
consider? Does it help to realize that the determinant of the square root must
be zero? wz — zy = 0.

71. Here our equations are:
witzy=w (w+z)z==c
yw+z2)=y =zy+22==2

Again w + z appears to be important.
Lw+2z=1 ILw+z#I1

72. How do your ten answers for Problem 69 compare with those for Prob-
lem 687
73 w2 +zy=0 (w+2)z=1
T oy(w+2)=-1 zy +22=0.
Where do we start?
w? + zy = 4 (w+2)z=5
y(w+2)=0 Ty + 22 =9.

2
w T 7 10
75'[y z] _[15 22]'
wrtazy="7 (w+ 2)z =10
y(w+2z)=15 Ty + 22 = 22.

74

10

N .
15 22 ] comes from? It is the square of

Can you guess where the matrix [

3 4
is a solution and try to solve the equations. Can you?
I couldn’t either without using the fact that the determinant of the product
is the product of the determinants:

[ 12 ] . So the equations above have a solution. Now let us forget that there

(wz — 2y)* = 4.
So wz —zy =2 or —2.

76. This problem is interesting because of the matrices which students choose
as candidates for having no square root. Which matrices have you chosen? As
we have seen, even when there is a square root (as in the previous problem),
it can be difficult to find, so, as a practical matter, we need to choose simple
matrices.

77. Here the determinant doesn’t let us out since each number has a cube root.
Does each matrix with determinant zero have a cube root?

78. You can.
79. Yes.
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Section 4.7 Commuting Matrices

80. You might have written the zero matrix and the identity matrix. You can
write some more.

81. Almost any guess will do.
82. You get four easy (and redundant) equations.
83. w2=1. 2wz=1.

84 w¥3=1. 3wz=1.

wt+r=w-+y wt+r=x+z

85.
yt+tz=w+y yt+z=z+z.

86. You know some. Can you produce three?

87. Here you need to be choosy. If a matrix commutes with every matrix,
then, in particular, it commutes with the matrices --- and - - -

88. Problems 82 and 85 were enough to do the 2 x 2 case. How many specific
matrices do you think that you will need to do the 3 x 3 case?
This is more work but no harder that the 2 x 2 case. (When I ask you about
inverses for 3 X 3 matrices it will be a harder problem.)

w=w+2y 2w+4r=z+ 2z

89. y =4y 2y + 4z = 4z.

90. This matrix is the square of the matrix in problem 82.

91. A3B= AAAB = AABA =

w—2r = w — 3y

3w+ 6z = z—3z

92. y—2z = —2w+6y
—3y+62z = —2zx+462.

93. Here again you get four equations.

94. We can solve equations, holding on to a, b, ¢ and d.
Or we could look at the answers to the two preceding problems. Then

[ 2 3: ] might seem like a good way to begin. The last corner wants to be

b

w— ()2,

— 4 — =2
95. w=1q1;. T=7;-

100. AD = A(B+C)=AB+ AC =
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101. AD =

p O a b| |[a b p 0
o [3 ][0 2)-[E 2[R0
103. (pI + qA)A=pIA+qIAA =

104.pI+qA:[p+5q 2q ]:[3“’ m ]

3q p+4q 5T w— 3

Section 4.8 Matrix Polynomials

105.
NP

(b) A3 = A2A =
(c) A* = A3A =
106.

1 4 1 2 1 0
@[o1]=#[o 1]+l 7]
(b) A3 = A%A =
(c) A* = A3A =
109. ] )

(1) When A is g i , A2 =94 — 141
(2) When A is (1] f A2 =241

. :1 2: ,
(3) When A is 3 4 , A =5A+2I.
(4) When A is ; 121 , A2 =124 — 5.

Use your guess and compute both sides.

Alternatively, you may square [ Ccl b ] and solve for p and q.

d
111. Ak = Ak A =

112. Perhaps there are two aspects to this problem. (1) How certain are you
that the formula is correct? (2) Have we done enough to prove that the formula
is correct?

113. If nis 1,
nA—(n—1)I=A-0I=A=A"

If nis 0,
nA—(n—1)I=0A—(-1)I=1I= A"
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If nis-1,
nA—(n—1)I=—-A+2I
Ifnis %,

1 1
nA—(n—1)I= §A+ EI'

114. 1, 3, 7, 15, 31. Is there a pattern?
These are coefficients, p, of A in the pA + gI forms of the first five powers
of A. Where do the coefficients of I come from?

115. 1. Yes. II. Yes. IIL. If the formula holds where it isn’t supposed to hold
then
Al=(021-1A-2022-1)I

Does this check?
IV. Let B be (22 —1)A —2(27~! — 1)I. Is B? equal to A?
116. Is it likely that any old 2 x 2 matrix will work?

117. (a) Multiply our given equation on both sides by the alleged A~! and
solve for A~1.
(b) The quantity a + d should be 2 and the determinant should be 3.

118. pA +ql
[5p+q 20 | _ [ w T
o 3p 4dp+q| | % w-%2|°
119. A2 =T7A.
[1 2 3] p pp [ ¢ 0 0
120. {0 1 2|=]|0 p p|+]0 g O
| 0 0 1 0 0 p | 0 0 ¢
(1 3 6]
121. 01 3 |=
| 0 0 1
p 2p 3p q9 9 q r 00
0 1p 2p |+ 0 ¢ g|+]|0 » O
0 0 »p 0 0 ¢ 0 0 r
122. Be neat. Be orderly. Be patient.
(12 20 24
A2=1] 22 36 50
| 8 12 20
[ 96 152 224
A3 =] 180 288 412
| 64 104 144
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123. 4, 13, 40, 121. Obscure. How about
8, 26, 80, 2427

124. Let B be A2 according to the formula which works for counting numbers:

B= ‘/§2_ Ly ‘/§2_3I.

125. Since M3 =0, detM = 0.

126. Look at Problem 121 and watch the numbers “move out” in 4, A2, A3

Section 4.9 Complex Numbers

w4 zy=-1 (w+2)z=0
ylw+2)=0 zy+22=—1.

128.M:[a _b].

127.

b a

129. Find the inverse of [ Z _ab ]

wl+zy=0 (w+2)z=-1

yw+2)=1 zy + 22 = 0.
22=uwthuw?-22=0w+2#0,s0w—2z=0: w=z Also, y=—z, so that
w? —z2 =0.

130.

131. The last problem is a guide.

132. The equations are in Hint 127. Note that  cannot be zero.

w T 2 -3
133.[y ][3 2]
12 -3 w T
13 2 y z |’
Section 4.10 Similarity

134. It’s easy to find a matrix which works, but we are required to find one
with an inverse. We need just one, so you may guess. However, a general answer
is acceptable.

137. Let p be det A. Let q be det B. Let r be det M.
138. Let M be your favorite matrix with an inverse.

139. Not many.
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140. We are back to equations. There are several matrices which work for M.

141. Let M be [ Z) Z ] and suppose that D = det M. This makes M1
equal
1 z —x
D| _—y w |
142. There are two ways to attack this.
w+22y=pw+rx x+2z=wq+zxp
Jw+by=yp+2r 3xz+5z=qy+ pz.

This looks foreboding. But the last problem says that 2p = 6, and Problem
137 says that p? — gr = —1, so that gr = 10.

II. We try to fix
1 z -z 1 2 w =z
wz—xzy | Y w 3 5 Yy z

so that the upper left corner equals the lower right corner.

143. Do we need to do a few more problems like the last one, or are we ready
to use the last one as a prototype?

I. If we follow our work above closely, we can try to show that [ Ccl 2 ] is

atd 1 d
similar to [ i %i ], where r = [a%]z + be.

II. zaw — zcw + zby — zdy
= —yazr + wce — ybz + wdz.

144. B=M"1AM.
145. Try S = M~ 'RM.

146. Try S = M~ 'RM.

Section 4.11 Square Roots

147. The determinant wz — xy of the square root is zero. So the first equation
becomes w(w + z) = a and the last equation becomes z(w + z) = 0.

149. Let p denote w + 2. Then, since the determinant of the square root is

w oz 2/p 3/p ]
ero, the square root must be .
’ d [ y z ] [ 2/p 3/p

150. Let p denote w + z.
151. Let p denote w + z.

152. Let p denote w + 2.
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153. Let p be va + d.
154. Let p be va + mb.

a b ] is either of the form

155. This problem, in essence, is to show that [ c d

[ nclla st ], in which case you have already domne it, or else of the form

[ 2 2 ] and you can do it just as you did Problem 148.

156. Here the determinant is not zero, so we are back to the equations

w? +zy = -1 (w+2)z =
y(w+2)=0 oy + 22 = —

Neither z nor y can be zero.

157. In Problem 76 we saw that ad — bc cannot be negative. So that is one

b
d to have a square root.

Here we no longer know that the determinant of the square root is zero. Let
us write wz—zy as D. Then the equation w? +zy = a becomes w?>+wz—D =a

or w(w + z) = D + a. Let p denote w + z.

condition for [ ‘cz

158. If R is a fourth root then R? is a square root. So we know that, if there
is a fourth root, then
(1) ad—bc>0 and
(2) either (a) a+d+ 2v/ad —bc > 0
or(b)a=dand b=c=0.
It would be nice if each matrix with a square root had a fourth root also.
Suppose that D = +/ad — bc and p = v/a+ d+ 2D. Suppose that p > 0 and

that
w z|_1| D+a b
y oz | c D+d |°

M= [
p
Does M have a square root?

Section 4.12 Cube Roots

159. If ¢ = 0 then there is a cube root.
If ¢ # 0 then z = 0.

160. If b = 0 then [ 0

0 d?/s ] is a cube root. If b # 0 then y = 0.

161. See problem 9.

162. It seems prudent to make y zero.
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w T . 14 13
164. [ v oz ] must commute with [ 13 14 ]

165. y=z. z =w. 27 =13 + 14.

166. Since (w + )% =27, w+z = 3.

4.15 Answers

I have tried to make the answers accurate. I hope you have your own opinion
before you look here. If we get the same answer, that should help your con-
fidence. If we get different answers and your answer works, that should help
your confidence even more. If I am right and you are not, then please have the
humility to resolve to be more persistent and orderly. Everyone makes mistakes.

Section 4.2 Multiplication

1 193 44
T 437 100 |°

2. Write down the things you learned and also the things you guess to be true.

3 [ w42y 42z

| 3w+dy 3z+4z |
1 3

4. (0 1

5. We come back to this later.

1 11" 1 n
o lo1]=[o7]

7. Does the formula above help? (We want the 1/3 power. Check your guess
by cubing it.)

11. Guess again. We come back to this.

1 -3
n—1
12. 10 [ 3 4 ]
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15

13. (1+d)"! [ c d ] . Under what conditions (on d) can you write a formula

. b
for the powers of the matrix [ Z ]?

d
1 pd=t
14. 0 g;l . You saw some pattern in the upper right corner. It is not

to be expected that you saw this terse way to express that pattern.
15. We will find all of these later.

16. We will find all of these later. Do you have any comment about the answers
you already have for these last two problems?

| ac+bd ad+be
11Aﬂv_[bc+mibd+ac]
(The opposite corners are equal.)
| ac ad+bc
o [ ]

Section 4.3 Solving Equations

20 w+ 2y T+ 2z
| 3w+ 1ly 3z + 11z |°

21. w=—-2; 2 = —9. Check:
11 -2 -9 |1 2
01 3 11| |3 11 |°

22. [ 11/5 9/5 ] . Check it.

-3/5 —-2/5

13/7 —-39/7 .
23. [ —_8/7 24/7 ] . Check it.
24 w—-3y=3 — 2w + 6y = 2.

The first equation says that —2w + 6y = —6, contradicting the second. There
is no solution.

27. The second equation says that w + z is not zero. Thus the third equation
tells us that y = 0. Then w? = 1 and 22 = 1, but w and z have to have the

same sign so that w + z is not zero. Check (1] 1{2 ] and [ _é __1{2 ] by
squaring. Do you really need to check them both?

3 3 1 1/3
28. Asabove, y=0. w®* =1. w=1. 22 =1. z=1. 2 = 1/3. Cube 0 1

to check your answer.
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Section 4.4 The Matrix System
00
0 [0 0]
30. We tell the answer in Problem 35, so see if you can find it before that.

31. The two sides come out equal.

32. T hope you picked B. You can write down two matrices where the product
one way differs from the product the other way.

33. The two sides come out equal.

34. I hope you picked B. Then you can write two non-zero matrices whose
product is the zero matrix.

35. You have two equations:
JA=A=Aland JA= A= AJ.

What you pick for A in each is critical. We will come back to this in section
five.

Section 4.5 Inverses

36. (1] _i ]
37. (13 _i ]
)
o, [ 14525
o | 30
a | 30

42. There is no answer.
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43. There is no answer. The matrix
1 -3

_9 6 | seems to be fully defective.

44. You will know how to do this when you finish this section.

45. The first problem in the next section is to find all of these.

46. .
1 3 -7/2 3/2 | _[1 0
[ 3 7 3/2 —-1/2 | [0 1]
[ —7/2  3/2 1 3] (10
3/2 —1/2 3 7110 1]
11/5 3/5 ] . . 1 - . .
47. [ 3/5 1/5 | is the inverse of [ _o 11 ] Can you write the inverse
1 b
2
Of[c d]'
_d_  _=b
48. [ d:é)c d_lbc :|
d—bc d—bc

49. w+ by = 1, but cw + bey = 0; that is c¢(w + by) = 0. So ¢ = 0. But
cx + bez = 1.

51. When d = %C. The demonstration of this is as in problem 49.

[ _d 1
52, | pe ¢ ]
1m0

53. When b =0 or ¢ = 0. Do both cases.
54. aw + by = 1 (first equation)
amw + bmy = 0 (second equation)

m(aw + by) = 0; m =0, but
am + bmz = 1 (last equation).

e [52)[s ][5 2]

The equations are contradictory.

56. We will learn more about this later.

d -b
d—b d—b
57'|:a_cc aac:|'
ad—bc ad—bc
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Section 4.6 Miscellaneous Problems

58. -2 is the determinant; so the matrix has an inverse. The formula in Problem
57 gives the inverse.

59. The determinant is 5, so the matrix has an inverse.

61. Multiply (ad — bc)(wz — zy) out. It should be the same as the determinant
of the matrix in the hint.

62. AA~!'=1. So zy = 1, and z cannot be zero.
63. 0.
64. 0.
65. 1. Suppose that w = —z. Then
9 1-—22

P=1-xy, zy=1-2% y= .
z

—Z T

. 1 0
You can square [ 1,2 z ] The result is [ 0 1 ]

T
II. On the other hand, suppose that

w+2z#0. Then z =0 and y = 0. w? =1 and 2? = 1. This seems to give four
more answers.

66. IA = A = AI for each matrix A. Let A be J. (If it’s true for each, then
I get to pick.) IJ =J =JI. JA= A = AJ. I'll pick I for A here. Then
JI =1 =1J. We conclude that I = J.

70. 1. Suppose that w+ 2 # 0. Then =0 and y = 0 and w? =0 and 22 =0
and the zero matrix is the only answer along this path.

I1. Suppose that w + z = 0.
z=—w. w?+zy=0.

Ifm;éo,y:—w?zand

w z . . . .
[ w? ] is a matrix whose square is the zero matrix.
- —w
T

If x = 0, then w = 0 and [ 2 ] is a matrix whose square is the zero

0

matrix.
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71. 1. Suppose that w+ z = 1.

Ifa:;éO,y:—M and
w x
w(l—w) 1—

] is a matrix which is its own square. Check it!
T

If z = 0, then w? = w, w? —w = 0, and w is 0 or 1. Similarly, z is 0
or 1. This gives four answers, two of which are appropriate here and two are

rritbl'lo 10 0 0 00
appropriate below: | o 1, | 5 g 1| g 1|0 0ol

II. Suppose that w4+ 2 # 1. Then z =0 and y = 0 and w? = w and 22 = 2.

72. If A is a matrix which is its own square (A? = A) and B = —A then
B? = (—A)? = A% = A = —B, so the negative of each solution to the previous
problem is a solution to this problem. Also the negative of each solution to this
problem is a solution to the previous problem.

73. y = —z. Sow? — 22 = 0 and 22 — 2?2 = 0. Thus w? — 22 = 0 and
(w+2)(w—2)=0. w+2#0,s0w—2=0; w=z.

1

2wx:1.x:m.

1)2:0

|
—_—~
|
€

|
[ V[N

N s N
|

—1 cannot be a square
( 2
1

g eegee

3o wW= g

Check one of the answers.

witzy=4 (w+z2)z=5
yw+2)=0 zy+22=09.
w+ 2 # 0 so y = 0 and there are four answers.

74.

75. From the middle equations we see that y = 37”3 Thus we can rewrite the
first and last equations:

202 +322 =14 and 3z%+ 222 = 44.

w? — 22 = —15 or (w + 2)(w — z) = —15.

Since (w + z)y = 15,
y = —(w — 2) = z — w. All this seems to going somewhere but I cannot finish
without some outside help.

If we use determinants to say that wz — zy = —2 then zy = wz + 2 and
w24+ wz+2=".

w4twz = 5§
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ww+z) = 5
(w—2)(w+2z) = -15
w _ 5
w—z 15
z = 4w. w? — (4w)? = —15. w? = 1 and we get two answers.

(Had we chosen wz —zy = 2, we would have two other, unexpected, answers.
If you work this out—not impossible but quite a challenge— you should be ready
for the section concerning square roots of matrices.)

The point of this problem was to show that a square root problem (having
an answer) can be quite difficult — impossible, it seems — if we don’t get some
help from determinants.

-1 0

0 -1

so this matrix, which is like -1, should have no square root. However, it does.
We will make this the object of study in another section.

If you chose [ (1] _01 ] or [ (1) (1] ], you were successful in showing that

76. We hope that you chose . The number -1 has no square root,

your choice has no square root.

Indeed, if you choose any matrix A whose determinant is negative, then
that matrix cannot have a square root R, for if R were a square root of A then
the square of the determinant of R must be the negative number which is the
determinant of A.

0 < (det R)> =det A< 0.

Does every matrix whose determinant is not negative have a square root?
77. Maybe we can put this off till later.

78. The computation would not fit here. It is on page 55.

79.

O O =
o = O

0
0 |. Our argument from problem 35 says that this is the only
1

=

answer for this problem.

You can also write a 4 x 4 identity matrix.

Section 4.7 Commuting Matrices

80. Did you write the matrix [ (1] } ] itself? The inverse also must commute.

You can write even more.
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1 2
w[12]
w=w+y wtr=zr+z
82.
y=y y+z==z2.

y = 0 and w = z. The matrices which commute with [ (1] } ] are those of the
w T
form [ 0 w ] .

83. The square roots of [ (1] } ]

are [ (1) 1/2 ] and its negative.

1
1 1/3
o [1 18]
85.[“’ ””
T w
1 1 1 0. .
[1 1]4—[0 1]1softh1sform.

86. You probably wrote the zero matrix and the identity matrix. You can
write several more.

11

87. wo commutes with L1 and L1 . So it must be of the
Yy z 01

form [ W T and also of the form [ wor Conclusion?
0 w T w

z must be 0. Perhaps you had guessed that [ lg 3} ] always works. Now

you know that nothing else always works.

88. If we pick and

OO =
O = =
[

, we can do it. Be neat!

I
e
e

It is easier if we pick

OO =

1 111

1 |and [ 0O O O |. It is surprising that
1 0 00

onder what the “easiest” pair to pick might be.

s OR =

we don’t need three matrices. 1
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More zeros make the equations easier. You can also do the 4x4 case. (Really!)

(Right now!)

89. [ ‘6’ §(zz—w) ] or

w T
[ 0 w4 %a: ] Check both forms.

91. AABA= ABAA = BAAA = BA3.

92. [ 2w a: 5 ] . There are other ways to write this. Check yours. Check

5117 ’LU-giE

T
r w—

©

®@
—
(9] g

z ] . It’s fun to check these.
2

94. 2 = w— (2%, Check it.

Of course, if b = 0 then we need to begin again. Suppose that b = 0.

If a=d and ¢ # 0 then z = w and z = 0.

If a = d and b = ¢ = 0 then any matrix [;j

If @ # d while b = 0 then z = 0 and y = <¥=2)

a—d °

100. AB+ AC = BA+CA
= (B+C)A=DA.

101. ABC =

103. pIA+qIAA = A(pI) + A(q])A
= AlpI + (qI)A] = A(pI + qA).

104 w=p+5q. z=2q.
Check: %m = 3q.
w—3=p+5¢—q=p+4q.
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Section 4.8 Matrix Polynomials

105. (a) A2 = 9A — 141.

(b) A% = (94 — 14I)A = 942 — 144
=9(94 — 14I) — 14A = 67A — 1261

(c) A* = (67A — 1261)A = 67A2 — 126A
= 67(9A — 14I) — 126 A = 477TA — 9381

106. 24 — I, 3A — 2I, 44 — 3I.

107. (a) A2 =54 +2I.

(b) A3 = A2A = (5A+20)A=5A4%+24
= 5(5A+ 2I) + 2A = 27A + 101.

(c) A* = 1454 + 541.

108. A2 =124 —51.

109. (a) 12=1+11. p=a+d. q is the negative of the determinant.

a b 10 a b1’
(b) (a+d) e d — (ad — be) 01 and e d work out to the

same thing.
110. 54 —41. nA— (n—1)I.

111 ARl = A*A = (KA— (k- 1)])A
— kA2 — (k—1)A=k(24—-1)— (k—1)A
=2kA—kI—(k—1)A=(k+1)A -kl

112. We have seen that this formula is correct for the first few counting num-
bers. Problem 111 says that once the formula is true for one counting number it
is true for the next. Can we be stopped now? NO! The trait is inherited. Each
counting number passes it on to its successor. (To justify all this from the
axioms in the introduction we need part (p).)

113. Given: A2 =24 —I.
So, if n = —1,
(—A+2I)A= A%+ 2I=-(2A—-1)+24=1

and —A + 21 is the inverse of A. Here A and —A + 21 commute, so we have
checked both sides.

Ifn=g, (34+30)° = 1(4+ 1)
= %(A2 +24+1)= %(4A) = A.
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114. 1,3, 7, 15, 31. 2, 4, 8, 16, 32.
The coeflicient of I in each line seems to be twice the preceding coefficient of A,
which is 27! — 1. A™ should be
(2" —1)A — 2271 — 1)I.
Suppose that k is a counting number such that A* = (2F—1)A—2(2F—1-1)I.
We wish to show that

AR+l = (261 _ )4 —2(2F —1)I.

Work this out if you can. The exponents are not too bad. Read below if you
must.

ARl = AR A = (2F —1)A2 - 2(2k1 - 1)A
=(2k-1)34-2I)- (2 -2)4
=(3-2F—-3—2F4+2)4—2(2F - 1)I
=(2-2k—1)A-202*-1)I
= (21 —1)A - 2(2F - 1)I.

Now, since this formula works for the first counting numbers, it always works.

115. (21 - 1D)A-2(2°-1)I=14A+0I = A= A%
(2°-1)A-227'-1DI=0A+1I=1= A
Our alleged inverse equals

(27t - l)A —-2(272 - 1)I
= (— —1A- 2(— —-nI
=(-3)A-2-DI=

(_
eI EItHE

ha | 3
Is it really the inverse?
B? = (27 — 1)24?
—2(22 —1)-2- (272 —1)A+4(277 —1)2I
=(2-2-27 +1)A2 —4(1-2F —272 +1)A
+4@21-2.277 +1)I
=(3-2%)A2 - 4(2-2% —273)A+4(3 - 23)I
=(3-23)(3A—2I)—4(2—-27 —277)A
+4(3 —23)1
=(9-8-28 —8+4-274+4.277)4
+(—64+2-22 +6—4-23)I

NJIOO

oy

ONIH

= A.

[\V]

116. I bet that [ L

3 4 ] doesn’t work.

117. (a) A2 =24 —3I
A=A"142 =21 3471
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3A1=2I-A
Al =321 - A).
AT'A=102A- A% =1(3]) =1
AA~! is the same thing. Our alleged inverse works.

(b) [ 121;] 121 ] You picked this one, didn’t you?

p = 3
dp+q = w—3
us. oo -
g = w— .
Check: 5p+q:57m+w_57m:w;
—3
3p = .

119. ATl — AR A — 7Th—1AA = 7F—1. A2
=7k A. (See problem 8.)

120. p must be both 2 and 3, so this problem cannot be done: there is no
answer.

We found something (problem 109) that worked for 2 x 2 matrices. What
can we do for 3 x 3 matrices?

121. 3p+qg=6; 2p+q=3.
p=3 qg=-3.
p+q+r=1; r=1. These check in all equations.

96 = 12p+q+r
180 = 22p+3q
122. 64 = 8p+gq
192 = 24p+ 3q
12 = 2p; p=6.

(Had you guessed that p would be 67?)
q = 16; r = 8. We need to check our values for p, ¢ and r in all nine equations.

123. These are 32 — 1, 32 — 1, 3% — 1, etc. Our guess is that

n __ n __
A":3 5 1A—3 3 3I.

We finish as in problem 114.

124. Compute B2. After half a dozen lines of careful algebra, you will have A.
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125. Let M be [ Z Z ] Then according to problem 109, M2 = (w + 2)M.

Thus M3 = (w + 2)?M. Since M3 = 0, and M is not the zero matrix (else
M? =0), w+ z =0, but this makes M? equal the zero matrix also.

p
126. The diagonal elements q keep the higher powers from becom-
r
ming the zero matrix as things “move out”. Try replacing these three central
numbers with zeros.

Section 4.9 Complex Numbers

127. You may solve the equations in the hint and be done with Problem 132.
Otherwise you may make some judicious choices for w, x, y and z to get a
specific answer.

(@)  (al + bi)(cI + di)

= al(cI + di) + bi(cI + di)
128. = acl + adi + bci + bdi?

= acl + (ad + bc)i — bdI

= (ac — bd)I + (ad + bc)i.

(b) Since ¢ and I commute, M and N commute, as we can see in computa-

tions similar to those above. Perhaps it is more satisfying to multiply [ Z _ab ]
c —d alc¢ —d a —b
d c | 2" d c b a |’
b

e _b
129. Problem 57 says that the answer is [ a’+b?  a¥ b ] Should we check
e B

this? (Note that it is of the form cI + di.)
You might just say that a? + b2 is the determinant of the matrix and this

is not zero unless the matrix is the zero matrix. However, this might be less
interesting.

130. If we assume that w — x = 0, we run into a dead end. However, if we
1 =1

assume that w+z = 0, we find two answers, one of whichis | Y2 Y2
V2 V2

that this is of the form of the matrices which we are calling complex numbers.

. Note

131. Our equations come down to

2 b
4w?
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or
4(w?)? — daw® — b* = 0.
By the quadratic formula we have
5 4a++/16a2 + 1662
w* = .
2-4
1

9 a
= —+ -+a2 + b2
w 3 3 a® +

Since b # 0 we must choose

o_a 1
= — 4+ = b2
w 2—|—2 a“ +

lest w? be negative. This gives two choices for w. Let us pick

1
w= g+§\/a2+b2.
z=w. T=32. y=-z.

Our answer is in the complex number form. Can you write our answer and

b

square it? It takes some diligence to come out with [ a _2 ]

w x

132. Answer: 2 ] You might have picked any one of these to

—1—w —w
T
call 7 at the beginning of this section.

2+3x = 2w—3y: y=—=x.

133. Bw+2x = 2x-3z: z=w.

Section 4.10 Similarity

134. Any matrix [ l;; g ] where z # 0. (If z # 0, the determinant is not

Z€ro).

T

. 0
135. Any matrix [ v 0

] where zy # 0.

136. Here both w and z must be zero so that [ Z z ] cannot have an inverse.

137. pr = rq and r #£ 0.
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[\V]

138. If your matrix M doesn’t commute with A = [ ; 4

] ,then M~1AM is

a different matrix which is similar to [ ; i ] .

139. Only the identity matrix is similar to the identity matrix. M —1IM = I.

2+3y = =z
140. 52m+3z = —w
—%w—2y = z
—3r—2z2 = -—y.
. . 1 -2
If we pick w=1and z=1then Mis | 4 e
3

141. Remember that wz — zy = D. When we add the first and last entries in
M 1AM, we get +(zaw — zdy — zya + wdz) which is a + d. (Right?)

142. 1. Since gr = 10, we might be tempted to gamble and say ¢ = 1 and
r = 10. Our gamble wins if [ ; ; ] is similar to [ 130 ; . You know how

to show that this really is so.
II. We need zw — 3zw + 2zy — bay
= —zy + 3wx — 2yz + bwz, or
dyz = 4wz + 6wz + 4xy.
(It’s hard to get away from guessing in this business.) Let’s make w equal to 2.
yz =2z 4 3z + 2zy.

Now, for convenience, make y equal to 2. This makes z equal to 0 and we may
take z to be 1. wz — zy = 2. Our arbitrary choices lead us, accidentally, to the
same answer as in part I.

143. L w=b,z=1,z=0and y = d_Ta. There are other guesses. It takes
some effort to show that this guess works if b # 0.

Ifb:O,trym:l,w:%,yzo,andz:azfd. This works if a # d and

¢ #0. If a = d we didn’t even need to start the problem.

Ifa;édandc:O,trym:zzla.ndw:“%dandy:@.

2
II.
(a — d)zw + 2byz = (d — a)zy + 2cwz. If b # 0, let’s make w equal to b again.
Try y = d*T“, z =0 and z = 1. This works.
Ifb=0,let usmakey =0, w=1,z2=1and z = %. This works unless
¢ = 0, but the case where b = ¢ = 0 is not hard.
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144. B2 = (M~1AM)(M~1AM)
= M~1AAM = M~1A2M.

145. §2 = (M—*RM)(M~'RM)
= M~'R:M = M—1AM = B.

146. This works just as above.

Section 4.11 Square Roots

147. If we add these equations we get (w + 2)? = a. Thus a > 0. If a = 0 then
¢ must also be zero if our matrix is to have a square root, and we already know

x/EO]

about square roots of the zero matrix. If a > 0 one square root is [ c

1 a O
or va c 01

Va
Note that there is no square root if a = 0 and ¢ # 0.

1|0 b _ .
148. i [ 0 dl If d = 0 and b # 0 there is no square root.

149. \
3 37508 813 2)
p=+5.

150. ;—22 = 2. There is no square root.

151. Here p? = 1, and there is a square root.

152. Here p? has to be a + d, so a +d > 0.

153. [ a/p dfp ] (If a + d = 0, there is no square root unless [ a d ] is
a/p d/p a

the zero matrix.)

154. [“/p b/p

ma/p mb/p ] (If a + mb = 0, there is no square root unless

[ e b ] is the zero matrix.)
ma mb

156. Since z # 0 it follows that z = —w, but then —1 = —2.
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157. Our candidate for square root is
1| D+a b
p c D+d |-
If we square this, we see that p? must be a + d + 2D or a + d + 2+/ad — be.
If a + d+ 24/ad — be > 0, our candidate wins.
If a + d + 2v/ad — bec = 0 then

a+d=w?+2zy+ 22

a+d=w?+2wz— 2D+ 22
0=a+d+2D = (w+2)?
w=-2z2 b=c=0
a=w+zy=24+zy=d

Problems 65, 67 and 132 tell us that such matrices have square roots.

. b .
In summary, the matrix [ Z d ] has a square root provided that

(1) its determinant is not negative and
(2) either (a) a +d+ 2vad —bec > 0
or (b)a=dand b=c=0.

158. () Ifp>0
thenwz—my:w—b—ﬁ

p
2 —
_D +(a+«;)2D+ad be _ (“+d;’22D)D =D>0.

(2) (a) If p> 0, w+ z + 2y/wz — zy = p + 2v/D > 0, and, according to the
previous problem, the square root has a square root.

(b) If a = d and b = ¢ = 0 then we can choose [ Z Z ] equal to either

val or else \/—ai (if a < 0). Problems 65 and 130 give square roots for these
and thus fourth roots for the original matrix.

Section 4.12 Cube Roots

159. If c#0and a #0, then z =0, z = 0, w = a'/® and y = ca—2/3.

There is no cube root if a = 0 and ¢ # 0.

160. If b # 0, then y = 0, w = 0, z = d*/3 and & = bd=?/3, unless d = 0 in
which case there is no cube root.
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161. The formula for the powers is

nil| @ b
(a + mb) [ ma mb ] If we make n equal to 1/3, we get a cube root,
provided that a +mb # 0. If a + mb = 0 and b # 0 then [ @ b ] has no
ma mb

cube root, but is similar to [ ] , which has no cube root.

00

1/3
0

different from zero.

a x
162. [ 4i/3 ] z has to be a2/3+a1/3bd1/3+d2/3. One of a and d must be

165. If we add w® + 3wz? = 14 and
3zw? + 23 = 13 we get (w + )% = 27.

166. If we substitute 3 — w for = in
w3 + 3wz? =14 and 3 — z for w in
3zw? + 23 = 13, we obtain the required equations.

Professor Philip Tonne
1946 Edinburgh Terrace, NE
Atlanta, Georgia 30307-1114

When asking me to look at your work, please enclose $10 to cover my time and
expenses. Your comments on this book are welcome free of charge.
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5.1 Introduction

This material is indicative of John Neuberger’s typical first year graduate course
in differential equations. It extends H. S. Wall’s undergraduate differential equa-
tions course. Wall developed an interest in differenetial equations for the oc-
casion of Ernst Hellinger’s arrival as a refugee from Germany in the 1930’s.
Wall wanted to understand some of Hellinger’s interests in order to encourage
Hellinger’s research revival after several years of great difficulty in Germany.
The similarity of much of this material with Courant and Hilbert’s “Methods
of Mathematical Physics” is no co-incidence. Hilbert, Hellinger, and Courant
were prominant figures in GOttingen’s great period. Wall was a visitor for a
year at GOttingen. His teacher was Van Vleck, a sudent of Felix Kleins at
Gttingen. I have never handed out such notes as these except after the course
had finished. Each course has it’s own character and there are rather striking
differences in ability levels from year to year. Some of the courses include much
more numerics.

5.2 Theorem Sequence
Theorem 1 If M > 0 there is K > 0 so that
(M) /n! < k(1/2)"Vn=1,2,...
Definition 2 Suppose each of f, fi1, fa,- .. is a function whose domain includes

[a,b]. The statement that f1, fa2, ... converges uniformly to f on [a,b] means
that if e >03 N € Z* so that if n> N then |f.(t) — f(t)| < eVt € [a,b].

Theorem 3 Suppose that L > 0 and each of f1, fz,... is a continuous function
on R so that

t
501 <L [ 1fasl| ¥neztten
o
If [a, b] is an interval then fi, fa,... converges uniformly to 0 on [a,b].
Definition 4 Suppose that each of fi, f2,-.. is a function whose domain in-

cludes [a,b]. The statement that {f;}5°, is uniformly Cauchy means that if
€>0then 3 N 3 for alln,m > N,|fn(t) — fm(t)| < € for all t € [a,b].

Theorem 5 Suppose fy is continuous on R, each of ¢ and b is a number, and
each of f1, fa,... is a function on R so that

¢
fn(t):b+/ fa1lVtER, neZt.

Show that {f;}52, is uniformly Cauchy on R.
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Theorem 6 Under the hypothesis of the previous theorem, let f(t) = lim, o0 fn(?)

for allt € R and show that {f;}°, converges uniformly to f on each interval,
[a,d].

Theorem 7 Under the hypothesis of the previous theorem, there is a unique
continuous function y so that

t
y(t) =b +/ yVieR

Definition 8 Let E be the unique funtion from R — R that is its own derivative
and is 1 at 0.

Theorem 9 Show that:

i) E(t) >0V teR

it) E is increasing.

ii)E(t) > (1+1¢) if t>0.

iv) E(t)E(s) = E(t+s) V s,t € R.

v) If L = E7! then L(u) + L(v) = L(uv) V u,v > 0.
vi) L'(t) =1/t VY t > 0.

Theorem 10 Suppose a < ¢ < b, ¢ € R, and each of p and g is a continuous
function on [a,b]. Suppose also that each of yo,y1,--. 18 a continuous function
on [a,b] so that

t t
yn(t):q+/ g+/ DPYn—1 V t € [a,b].

There is a function y on [a,b] to which y1,ya, ... converges uniformly on [a,b).
Moreover, y is the unique continuous function f on [a,b] so that f(t) = q +

g+ [fpf YV teab).

Definition 11 An integrating factor for the ordinary differential equation,
y' = py + g, is a function, u, which is never zero such that if u is multiplied by
the differential equation, then the left hand side of the equation can be written
as the derivative of uy'.

Problem 12 Find an integrating factor for y(c) = q,y' = py + g.

Problem 13 Show that if g is a continuous function on [0, 1], then:
(i) there is a unique function y on [0,1] so that y(0) =0 =y(1) and —y" =g.
(i) Find as nice a form for your answer as possible.

Note: Study of functional analysis was born with Problem 9!
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Definition 14 A metric space S is a collection of points with a distance (met-
ric), d, satisfying:

i) d(z,z) =0

i) d(z,y) >0 ifz #y

iti) d(z,y) = d(y, z)

w) d(z,y) + d(y, 2) > d(z, 2)

Definition 15 A complete metric space is a metric space in which every
Cauchy sequence has a sequential limit (in the space).

Definition 16 Let S be a metric space. A function, f : S — S, is a contrac-
tion mapping if 3 0 < A < 1 such that d(f(z), f(y)) < Ad(z,y) ¥V z,y € S.

Theorem 17 If S is a complete metric space, f : S — S is a contraction map-
ping on S, g € S, and z,, = f(zn—1) YV n =1,2,... then x1,z2,... converges
to the unique fized point of f.

Problem 18 Find all non-trivial functions y on R so that

y(0) =0 and ¢/ (t) = ((y(1)*)"* V t € R.

Theorem 19 Suppose that g is a continuous function from R to R so that
g(t)+9g(s)=g(t+s)Vi,sinR. Then I c e R so that g(t) =ct Vi eR.

or

Theorem 20 Suppose f is continuous from R to R so that f(t)f(s) = f(¢t +
s) V t,s. Then either f =0 or 3 a number c so that f(t) =e?* VteR.

Theorem 21 Suppose a < b,a < ¢ < b, each of q11,q12,921,q22, f, and g is
a continuous function on [a,b], and each of r and s is a number. There is a
unique pair u, v each of which is a function on [a,b] so that:

i)u(c) =, v = f+quu+qi2v

i) v(c) = 8, v' = g + ga1u + gav.

Definition 22 A linear (vector) space, (S,+,-), is a set of points, S, to-
gether with two functions: + : S xS — S and - : R x § — S such that given
z,y €S and a,b € RN:

)z+y=y+z

i) (z+y)+z=z+ (y+2)

iii) 30€ S such that z+0==z allz

w)(a+ b)z = ax + bz

v) a(z +y) = az + ay

vi) If az = 0 then a = 0 or z is the zero element of the set.
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Definition 23 A linear transformation, T, is a function with domain and
range a linear space such that given x,y in the space and o € R:

Tz+ Ty =T(z +y) and oTz = T(az).

Definition 24 Suppose H = (S,+,-) is a linear space. A norm for H is a
function || - ||such that if each of z,y € S and o € R then:

i) ||z|| > O unless x is the zero element in which case ||z|| =0

i) [zl = Jal o]

iii) |z + yll < [zl + [yl

Definition 25 A linear transformation, T, is bounded provided 3 a number
M > ||Tz|| < M||z| for all  in the domain of T. The smallest such number M
is denoted |T|.

Definition 26 L(R?%, R?) is the set of linear transformations from R? into R2.

Theorem 27 If a < b, a < c < b, Q : [a,b] — L(R2,R?) is continuous,
G : [a,b] — R? is continuous, and a € N2, then there is a unique function Y
from [a,b] — R such that:

Y()=aandY'(t)= G(t) + Q)Y (t) V t € [a, b].

a b
c d

|G 2) =Gl () e

Note: The greatest lower bound of all such M is in the set of all such M.

Definition 28 If (
M such that

) € L(R2,R?) then | (Z Z) | is the least number

Problem 29 Find all functions f on [0,1] and all A # 0 so that f"' = —(1/A)f
and f(0) =0= f(1).

Note: These eigenfunctions form a basis for the space of continuous functions

on [0,1] with root mean square norm: ||f| = wfol 2.

Theorem 30 Suppose that each of H and K is a normed linear space and A
s a linear transformation from H to K. Then A is bounded if and only if A is
continuous.
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Theorem 31 Suppose a < b, a < ¢ < b, Q is a continuous function from
[a,b] = L(R%,R2), G is a continuous function from [a,b] — L(R%,R2), and
a € L(R2,R?). Then I a unique function Y from [a,b] — L(R2,R?) so that

Y(c)=aand Y'(t)= G(t) + Q)Y (t) V t € [a, b].
Note: Q(t)Y(t) means the composition of the two linear transformations.
Definition 32 Suppose a < b and Q is a continuous function from [a,b] to

L(R2,R2). Denote by M the function from [a,b] x [a,b] — L(R2,R2) so that if
each of s and r is in [a,b], then

M(r,s) =Y (r) where Y(s)=1I and Y'(t) = Q(t)Y (t) V t € [a, b].
Note: M depends on [a,b] and on Q. M is somewhat like E.

Theorem 33 Supposea < b, Q is a continuous function from [a, b] to L(R?, R?)
and M is as in the previous defintion. Then

M(r,s)M(s,q) = M(r,q) V r,8,q € [a,b].

Note: M(r,s)M(s,r) = M(r,r) = 1. M(r,s) and M(s,r) are inverses. e* and
e~ * are reciprocals. M never has determinant zero and e® is never zero.

0 -1 T T\ .
Problem 34 Suppose that Q(t m) = < ) < ) VteR, < ) in R2.
PP Q(t) < y 1 0)\y y
Find an expression for M(t,s) ¥V t,s € R.

Theorem 35 Under the hypothesis of Thereom 33 and using Definition 32,
show that My(s,r) = —M(s,7)Q(r) ¥V 7,5 € [a, b).

Hint: Need to show derivative has to exist. Establish product rule first.
Theorem 36 Suppose a < ¢ < b, Q is a continuous function from [a,b] —
L(R%,R?), G is a continuous function from [a,b] — R2, and Y is a function

from [a,b] to R? so that Y'(t) = G(t) + Q)Y (t) V t € [a,b]. Then

Y(t) = M(t,c)Y(c) + /t M(t,s)G(s)ds ¥V t € [a, b].

Hint: Use an integrating factor for Y = G + QY to obtain the result.

Problem 37 Find A;,A; € L(R?%,R?),G : [0,1] — R2, and Q : [0,1] —
L(R%,R?) so that the problem of finding Y : [0,1] — R? such that
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is equivalent to finding y : [0,1] — R so that
y(0)=0=y(1) and —y" =g.

Theorem 38 Suppose A € L(R%,R?) and Q(t) = AV t € R. Then M, as
defined in Definition 32, has the property that

M(t,s) = M(t—s,0) Vi,s €R.
Moreover, if T(r) = M(r,0) V r € R, then
T(0) =1,

TA)T(s)=T(t+s)Vt,seR and
T(t)=e*ViteR

Theorem 39 Suppose that (a,b) € R?, each of a and B is a positive number,
and f is a continuous function from [a — a,a+a] x [b— B,b+ B8] — R. Suppose
moreover that 3 K > 0 so that the following Lipschitz condition holds:

If(t,2) — ft,y)| < K|lz—y|VitE[a—a,a+a], z,ye[b—B,b+p]

Then there is v > 0 for which there is a unique function y : [a —v,a+v] > R
so that

y(a) =b and y'(t) = f(t,y(t)) Vt € [a —v,a+ .

Note: The previous theorem is called a local existence theorem and the argu-
ment given generalizes to n dimensions.

Note also: The previous theorem might well be stated in the following way.

Theorem 40 Let Q =[a—a,a+a] X [b—B,b+ ], f be a continuous function
with bound, B, on Q and for each t € [a — a,a + &] assume that f is Lipschitz
with Lipschitz constant, K, on [b— 3,b+ 3. If 0 < v < min{1/K,B/K, a} then
there exists a unique solution to

yla)=bandy = f(t,y) VYt [a—v,a+7].

Theorem 41 Supposea < b,Q : [a,b] — L(R?,R?) is continuous, and A, A €
L(R%,R?). Let M and Q be defined from Definition 32. TFAE:

i) If G : [a,b] — R2? is continuous, then 3 wuniqueY : [a,b] — R2 so that
A1Y (a) + A2Y (b)) = 0,and Y' = G + QY.

ii) [A1 + A2 M (b,a)] ! ezists.

Problem 42 Restate Problem 13 in vector and matriz notation by defining
A1,45,Q,G, andY so that i) and ii) are true and imply the solution to 13.
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Theorem 43 Suppose A1, A; € L(R2,R?),Q : [a,b] — R is continuous, and
(A1 + AsMg(b,a)) ! exists. Then there exists a function K : [a,b] x [a,b] —
L(R%,R?) so that if G : [a,b] — R2, is continuous, then the unique function
Y : [a,b] — R? satisfying A1Y (a) + A2Y (b)) =0 and Y' = G + QY is given by

b
V() = / K(t,5)G(s)ds ¥ ¢ € [a, b].

Theorem 44 If each of g,q : [a,b] — R is continuous, and A,, Ay € L(R?,R?),
then there exists a unique function y : [a,b] — R satisfying

Y —qy=g and A (5((‘2))) + 4 (5,((’;))) - (g) (%)

if and only if (A1 + M(b,a)A2)™! ezists where Q(t) = (q?t) (1)) ,t € ]0,1],
and M = Mg. Furthermore, y may be wrtten as

y(t) = / ’ k(t,5)g(s)ds8V t € [aB]
for some continuous function k on [a,b] X [a, b].
Theorem 45 Suppose Q : [a,b] — L(R?,R?) is continuous. Then
det(Mg(t,s)) = ef: Qv t,se [a, b].

Theorem 46 Under the hypothesis of Theorem 44,

k(t,s) = k(s,t) V s,t € [a,b] <= detA; = detAs,.
Note: k = one of small corners of K from Theorem 43.
Problem 47 Find an inequality for ||A, --- A1z — By, --- Biz| < ...

Note: The inequality is key to a numerical process and one gets a good error
estimate with a good inequality.

Problem 48 Write a code to solve Y' = G + QY for Y € R2.

Definition 49 Suppose fi, fa,... is a sequence of functions from [a,b] — R.
The statement that the sequence is equi-continuous at c means: Ve > 036§ >
0 such that if z € [a,b], and |z — c| < 8, then |fo(z) — fo(c)| <eVne Zt.
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Definition 50 Suppose fi, fa,... is a sequence of functions from [a,b] — R.
The statement that the sequence is uniformly equi-continuous on [a, b] means:
Ve> 030 > 0 such that if z, c € [a,b] such that |x—c| < § then |fn(z)—fn(c)| <
evVneZt.

Definition 51 The sequence f1, fa,...: [a,b] = R is uniformly bounded on
[a,b] if I M eR> fpo(x) <MV z € [a,b)].

Theorem 52 Pointwise equi-continuous on I implies uniformly equi-continuous
on I.

Theorem 53 If fi, fa,... : [a,b] = R is a uniformly bounded equi-continuous
sequence of functions then {f;}52, has a uniformly convergent subsequence.

Theorem 54 Suppose a < b, k is a continuous real valued function on [a,b] x
[a,b] (like k in Theorem 44 ). Suppose also that each of {f;}2, and {g;}52, is
a sequence of continuous functions on [a,b] so that {g;}° is uniformly bounded
and

b
fu(t) = / k(t,s)gn(s)ds V t € [a,b], n€ ZT

Then {f;}2 is uniformly bounded and equi-continuous.
Claim: Previous two theorems have to do with compactness and kernels.

Definition 55 The function Q : SxS — R isbilinear if Vz,y,z2 €S and Vc¢€
R:

i) Q(z +y,2) = Q(z,2) + Qy, 2),

i) Q(z,y + z) = Q(z,y) + Q(=, 2),

ii1) Q(cz,y) = cQ(z,y),and

i) Q(z, cy) = cQ(z,y)-

Definition 56 The normed linear space ((S,+,-),| -|) s an inner product
space if there is a bilinear function @ : S x S — R so that

i) Q(z,y) =Qy,z) Va,y €S and
i) Q(z,z) = ||z|* Vz € S.
Notation: Typically an innerproduct, Q(z,y), is written (z,y).

Theorem 57 If ((S,+,-),|| - |) is an inner product space then the function Q
above is unique.

Definition 58 Suppose H = ((S,+,-),|| - ) is an inner product space and
T € L(H,H). The statement that T is compact means that if x1,Z3,... 15 a
bounded sequence in H, then Txq,Txs,... has a convergent subsequence.
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Definition 59 If H is an inner product space and T € L(H,H) then T is
symmetric means (T'z,y) = {(z,Ty) V z,y € H.

Definition 60 If H is an inner product space and T € L(H, H) then T is non-
negative means (Tz,z) >0V z € H.

Theorem 61 If H is an inner product space, T is a symmetric member of
L(H,H), o and B are distinct eigenvalues of T, and z,y are the eigenvectors
associated with o and (3 respectively, then (z,y) = 0.

Theorem 62 Suppose H is an inner product space, T is a symmetric member
of L(H,H), and Tz = Az for some number A\ and some x € H, = # 0. If
y € H and {(z,y) = 0 then (z,Ty) = 0.

Theorem 63 (Cauchy, Schwartz, Bunakowski inequality) If H is an inner
product space then
(@,9)* < llz[?[ly|* V 2,y € H.

Hint: Find ¢ so that (y — ¢z, z) = 0 and rewrite.

Note: From this point forward, we will suppose H is an inner product space
and T € L(H, H) is symmetric, non-negative.

Definition 64 Nt = inf{(T'z,z) : ||z| = 1}.

Definition 65 The operator norm on T is denoted by |T| and is the small-
est number M satisfying | Tz| < |M|||z|| all z € H. is Equivalently, |T| =
sup{|[Tz|| : [l«] = 1}-

Theorem 66 Nr < |T|.
Theorem 67 IfAeR, A #0, = € H, then

ITz|* = %1 {T(Az + 1/ATz), Az + 1/ATz)) — (T(Az — 1/A\Tz), Az — 1/ATz))].
Hint: Use bilinearity of inner product.

Theorem 68 ||Tz|2 < XZ[|[Az + 1/ATz|? + [Az — 1/ATz|?], Vz € H, X €
R, X#0.

Hint: Simplify to: % [\?||z[|> + 1/A?||Tz||?] and pick A to minimize.

Theorem 69 Show |T| < Nt and conclude |T| = Nr.
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Theorem 70 If T is a compact, symmetric, non-negative member of L(H, H)
for some inner product space H, then |T| is an eigenvalue of T'.

Theorem 71 IfT is a compact, symmetric member of L(H, H), then T has an
eigenvalue X\ so that |A| = |T|.

Definition 72 If X = (S,+,-) is a (real or complex) vector space and M C S,
the statement that M is convex means that if 2,y € M thentz+ (1 —t)y e M
vV telo,1].

Definition 73 If X = ((S,+,),|| - ||) then M C S is complete means that
every Cauchy sequence in M converges to a point in M.

Definition 74 A Hilbert space is a complete inner product space.

Theorem 75 If H is an inner product space, M is a complete conver subset of
H,z € H, and x ¢ M, then there is a unique point y of M such that

e —yll <llz—wl| VweM, w#y.

Hint: Show there can’t be two points y; and y; so that ||z — y1|| < ||z — w||
for all w € M and ||z — y2|| < ||z — w|| for all w € M.

Definition 76 Suppose H is an inner product space. The statement that P is
an orthogonal projection on H means that there is a subspace S of H so
that if ¢ € H, then

PreSand o~ Pe| <|le—y| Yy €5, y#Pa.

Theorem 77 Suppose H is a Hilbert space. If P is an orthogonal projection
on H, then

i) Pe L(H,H),

it) (Pz,y) = (z, Py) V z,y € H and

iii) P2 = P.

Theorem 78 Prove the converse to the previous theorem.

Theorem 79 Suppose that H is an inner product space and T is a symmetric,
compact member of L(H, H). If A\ # 0, then the set {x € H : Tz = Az} is finite
dimensional. Equivalently, the eigenspace of T' for the eigenvalue \ is finite
dimensional.
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Theorem 80 Prove Bessel’s identity. Suppose H is an inner product space and
d1,P2,...,0n is an orthonormal sequence of members of H. If ¢1,¢a,...,¢, € R
and x € H, then

llz — (c161 + -+ cadpn) [? = ll2l® = D (2, )* + D (i — (2, ¢0))*
1 i=1

i=

Hint: Theorem 70.

Theorem 81 Under the hypothesis of Theorem 79, if \)0 there ezists at most
finitely many eigenvalues of T with magnitude greater than M.

Note: T can have infinitely many eigenvalues.

Definition 82 The dual space, H*, of the Hilbert space, H, is the collection
of all linear functionals on H.

Theorem 83 If H is a Hilbert space and f € H*, then there is a unique point
y € H so that f(z) = (z,y) V ¢ € H.

Definition 84 If H is a Hilbert space and T € L(H, H) then the null space
of T is defined by N(T') = {z : Tz = 0}.

Note: N(T) is a subspace of H.

Theorem 85 Suppose each of H and K is a Hilbert space and T € L(H, K).
Then there is a unique member T* of L(K, H) so that {Tz,y)x = (z, T*y)g V z €
H, ye K.

Theorem 86 Suppose each of H and K is a Hilbert space and T € L(H,K).
Then N(T) = R(T*)* and N(T)' = (R(T*)*)* = R(T*).

Problem 87 (Suburban Problem) Divide a square grid into n by n pieces and
attach a number to each grid point along boundary. Given the values of grid
points on the boundary, pick initial values for all interior grid points, then assign
values to each interior grid point by averaging its nearest neighbors. Iterate.
Write a code for this elliptic problem.

Problem 88 Prove iteration in suburban problem goes to a unique solution.

Problem 89 Let u be a real valued continuously differentiable function on the
square disk with corners at (0,0) and (1,1) such that u3 = uz and u(0,y) =
f(¥),0 <y < 1. Suppose z € (0,1]. Find an expression for the value of u at
(z,0).

Copyright 1/01 John W. Neuberger 100



Texas-Style Theorem Sequences

Problem 90 Divide [0,1] into n pieces of equal length and [0,z] into n pieces
of equal length. Replace the partial differential equation in Problem 89 with a
difference equation. Solve the difference equation to arrive at a value at (z,0).
(Discover the Bernstein polynomials).

Definition 91 Let p : [a,b] — R be a continuous function.

i) Lmy = y" —py f y € CP([a,b]) and y(a) = y'(a) = y(b) = ¥'(b) = 0.
(minimal operator)

i) Ly = y" — py if y € C¥([a,b]) (mazimal operator)

iii) Ly = y" — py if y € CP([a,b]) and

4 () <4 () = (o)

where not both A1 and As are zero matrices.

Definition 92 Let L?

[a
tions with inner product, (f,g) = f: fg. Two such functions are considered
equivalent if they differ only on a set of measure zero.

b denote the set of all square [Lebesgue] integrable func-

Definition 93 If H is a Hilbert space and T € L(H, H), then the adjoint of
T is the operator, T*, with domain all y € H for which there is z € H such that
(Tz,y) = (z, z) for all z in the domain of T. For each such y, T*y = 2.

Theorem 94 Lj; and L,, are adjoints.

Theorem 95 Suppose that for each g € Cqp) 3 unique y € Dom(L) such that
Ly =g. Then (Lf,g) = (f,Lg) Y f,g € Dom(L) <= det(A;) = det(Ay).

Problem 96 Determine Range(L,,).

Problem 97 If g € Cla ) find y € Dom(Lys) such that Lyy = g and ||y|| is
minimum.

Hint: Pick two numbers, (c,d), so that if y satisfies y(a) = ¢,3'(a) = d and
y" — py = g, then ||y|| is minimum as compared to ||z|| for any other solution,
z,to 2" —pz=g.

Problem 98 Suppose for each g € Cqp), Ty denotes the element y as in Prob-
lem 97. Investigate T* for T as in Problem 97.

Theorem 99 H = L[20,1] ><L[20,1] is a Hilbert space under the inner product,{f, g) =

/fol 24 (f")2. and {(f,) 1 fe 0[10’1]} is a subspace of H.
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Theorem 100 The closure in Ly X Lo of {(;,) : f e 0[10,1]} is a function.

Le. No two pairs have the same first term and distinct second terms.

fi fa

f1, fa, ... converges uniformly (everywhere) to f. Thus f is continuous.

Lemma 101 If (fl), (fZ) , "+ -CONVETgEs in L[2071] X L[ZO’I] to <£> then

Problem 102 If each of H and K is a Banach space, : € H x K, and

T € L(H,K), find the unique point z € H so that ¢(z) = 1| <f1?m) - <Z) |2

18 minimum.

Problem 103 Write (py') — qy = g as a system where p is continuous and
positive on [a,b], letting v = py'. Generalize many of the above theorems to this
setting.

Problem 104 Method of Lines on the heat equation. Solve system numerically:

Y/(t) = Yip1(t) — 2Yi(t) + Yica()]/A® Vi = 1,2,...,n — 1,h = 1/n, where
yi(t)

Yt)=1| :

Yn (t)

Theorem 105 (Jordan Normal Form theorem) If A is a linear transformation
from a complezx finite dimensional space onto itself there always exists a basis of
eigenvectors and generalized eigenvectors.

Problem 106 Suppose Az = Az and z is a generalized eigenvector (for eigen-

value )\) of index 2. etz =....

Definition 107 Suppose that each of X andY is a Banach space, F is a func-
tion, the domain of F is a subset of X, and the range of F is a subset of Y. The
statement that F' is Fréchet differentiable at the point © € X means that:

i) {g€ X :|lg—z|| < r} C Dom(F) for some r)0 and

it) there exists T € L(X,Y) such that if €)0 then 3 §)0 satisfying:

I1F(y) — [F(z) + T(y — 2)]lly
lly — |l

provided y € X and 0 < ||y — z|| < 8. We denote T by F'(z) = T and T is
unique.

<€

Definition 108 Suppose that each of X andY is a Banach space, F is a func-
tion, the domain of F is a subset of X, and the range of F is a subset of Y.
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The statement that F is twice differentiable at z € X means that if h € X
and gn(y) = F'(y)h Y y € Dom(F") then gy, is differentiable at z. If F is twice
differentiable at = then F"(x)(h,k) = (g),(x))k ¥V h,k € X.

Note: F" is bilinear but not necessarily linear.

Theorem 109 If the domain of F" contains an open subset Q) f X and F"
is continuous in an appropriate sense, then F'(z) is a symmetric bilinear
function for all z € .

Problem 110 Define higher Frechet derivatives F(™) for n > 2. Prove a sym-
metry result under the continuity hypothesis above. Define a Taylor’s formula,

F(z) = F(a)+ F'(a)(z—a) + %F"(a)(w —a)’+...+ +ﬁ 01 F("_l)(a—|— s(z—
a))(z—a)" lds+ 1 fol F™(a+ s(z — a))(x — a)"ds.

If F™ ezists and is continuous for all y so that ||y — a|| < r then for all z so
that ||z —a| <,

F(z) = F(a)+ F'(a)(z—a) + %F"(a)(m —a)?+...+ +ﬁ 01 F("_l)(a—|— s(z—
a))(z—a)" lds+ 1 fol F™(a+ s(z — a))(x — a)ds.
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6.1 Introduction

This is a self-contained course in mathematical foundations. It requires no
formal prequesite. At Hardin-Simmons University, we require two semesters of
calculus before a student may take this course; however, this is just to ensure
that we have “serious” students enroll.

I have taken great pains to ensure that this course actually covers some mean-
ingful mathematics, and is not just a theorem proving course. The topics include
logic, set theory, number theory, and functions and relations. The topics are
integrated by design. Quite frankly, I am not very happy with the way I have
handled the logic rules and set theory. In future revisions, I intend to integrate
the logic rules and set theory even more.

Anyone who decides to use these notes is encouraged to adapt them to his
specific needs. I recommend that these notes be used only as a basis for a
developing a course.

6.2 Theorem Sequence

Math 4350
Seminar in Mathematics
Mathematics Structures

Spring, 1999

Instructor: Dr. James Ochoa
Office: SR-B5
Telephone: 670-1388

Office Hours: Monday through Thursday, 1:00 - 3:30, or by appointment. You
are welcome to stop by and visit me any time my office door is open.

No textbook is required. You will need a loose-leaf notebook and a hole-punch.
You are responsible for the notes I give you.

Grading Policy.

I will assign problems. Students will work the problems and present well-written
solutions in class. In addition, I will also assign problems to be turned in.
Students will be evaluated on both the quality and quantity of correct solutions.
The course grade is subjective.

Most of the problems will involve proving statements.

Attendance Policy.
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Attendance is required. Five points will be deducted from the final grade for
each unexcused absence. The first three absences are automatically excused. In
order for an absence to be excused, proper documentation must be provided. In
the case of illness, a note from a doctor or school medical personnel is required.
In the case of a funeral, a death notice is required. In order for school sponsored
activities to be excused, the student must meet with me before the absence. Any
student who is absent eleven or more times, excused or unexcused, will fail the
course.

You are to present only your work. The only exception is if I help you. Pre-
senting anyone else’s work is considered cheating. If you understand this, sign
beside this paragraph.

The above is the course syllabus.
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We begin with some formal rules of logic. A statement is a sentence, which in
a given context, is either true or false.

Logic Rule 1 No unstated assumption may be used in a proof.

Logic Rule 2 Let p and q be statements. If the compound statement “p and
not q” implies a contradiction, then the statement “If p, then q” is true.

We may use Logic Rule 2 to prove the statement in the following example.
Example 3 Let n be a positive integer. If 9 divides n, then 3 divides n.

Proof. Suppose that 9 divides n and 3 does not divide n. Since 3 does not
divide n, neither does 32. Since 3% = 9, it follows that 9 cannot divide n. This
is a contradiction, since 9 divides n. Therefore, if 9 divides n, then 3 divides n.

Logic Rule 4 Let p be a statement. The negation of the statement “Not p”
means the same as p.

Logic Rule 5 Let p and q be statements. The negation of the statement “If p,
the q” means the same as “p and not q.

Logic Rule 6 Let p and q be statements. The negation of the statement “p
and q” means the same as “Not p or not q.” The negation of the statement “p
or q¢” means the same as “Not p and not q.”

Let p(x) be a sentence about z (in this case z is called a variable). We say that
z is in the domain of p if the sentence p(z) is a statement. For example, let
p(z) be the sentence “z +3 = 7.” Then 6 is in the domain of p since p(6) is the
(false) statement “6 + 3 = 7.” On the under hand w is not in the domain of p,
since we cannot, in the current context, determine whether “w + 3 = 7” is true
or false.

Let p(z) be a sentence about z. The sentence “For all z, p(z)” is a statement.
The expression “for all” is called the universal quantifier. It is understood that
the phrase “for all z” refers only to z in the domain of p(z). The sentence “There
exists an  such that p(z)” is a statement. The expression “there exists” is called
the existential quantifier. It is understood that the phrase “there exists an z”
refers to some z in the domain of p(z).

Logic Rule 7 Let p(z) be a sentence about . The negation of the statement
“For all z, p(xz)” means the same as “There exists an x such that not p(z).”

Logic Rule 8 Let p(z) be a sentence about . The negation of the statement
“There ezists an = such that p(z)” means the same as “For all z, not p(z).”
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Logic Rule 9 Let p and q be statements. Suppose the statements “If p, then
q” and p are steps in a proof. Then q is a valid step.

Logic Rule 10 Let p, q, and r be statements. The following are all true state-
ments:

1. If p, then p orq.
If q, then p or q.

2. If p and q, then p.
If p and q, then q.

8. If “Not q” implies “Not p,” then p implies q.
If p implies q, then “Not q” implies “Not p”.

4. If p implies q and q implies r, then p implies r.
Logic Rule 11 For every statement p, either p or “Not p” is true.

Logic Rule 12 Let p, q, and r be statements. Let 1 denote a true statement
and let 0 denote a false statement. Then:

~

The statement “p and q” means the same as “q and p,”

The statement “p or q” means the same as “q or p”

The statement “p and q; and r” means the same as “p; and q and r.”
The statement “p or q; or r” means the same as “p; or q or r”

The statement “p and q; or r” means the same as “p or r; and q or r,”
The statement “p or q; and r” means the same as “p and r; or q and r,”
The statement “p or 0” means the same as p,

The statement “p and 07 is false,

© ® N S =

The statement “p or 1”7 is true,

~
S

The statement “p and 1” means the same as p,

~
~

. The statement “p or not p” is true, and
12. The statement “p and not p” is false.
The following will remain undefined: set, is a member of, collection, a sentence

about, statement, natural number, and integer.

Let A be a set. If z is a member of A, we write z € A. If  is not a member of
A, we write z ¢ A.
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Definition 13 Let A and B be sets. We say that A is a subset of B, and write
A C B, if the following statement is true:

Ifx € A, then z € B.

For example, let A = {1,3,5} and let B = {1,2,3,4,5}. Then A C B.

Let S be a set and let p(z) be a sentence about members z of S. We write
{z|p(z)} to denote the collection of all z € S such that p(z) is a true statement.
In this case, p(z) is called a condition.

Axiom 14 Let S be a set and let p(z) be a sentence about members = of S.
Then {z|p(x)} is a subset of S.

Definition 15 Let A and B be sets. We say that A and B are equal, and write
A=B if AC B and B C A.

For example, let A = {2,4,6,8} and let B = {8,6,4,2}. Then A and B are
equal.

We write N to denote the set of natural numbers. We write Z to denote the set
of integers.

Axiom 16 The set of natural numbers is a subset of the set of integers.
The empty set, (), is the set with no members.

Proposition 17 Let S be a set. Then®) C .S and S C S.

Definition 18 Let S be a set. The power set of S, P(S), is the collection of
all subsets of S. In this context, the set S is called the universal set.

Axiom 19 Let S be a set. Then P(S) is a set.
Problem 20 Let S = {2,3,4}. List the members of P(S).

Definition 21 Let S be a set. Let A and B be subsets of S.

1. The intersection of A and B is the set

AﬂB: {z|z € A and z € B}.

2. The union of A and B 1is the set

AUB:{m|m€Aorw€B}.
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8. The complement of A is the set

~A={z|z € S and z ¢ A}

Proposition 22 Let S be a set. Let A and B be subsets of S. Then A B,
A|JB, and ~A are all subsets of S.

Proposition 23 Let A and B be sets. Then A()B is a subset of A.

Proof. Let £ be a member of A()B. Then z € A and z € B. In particular,
z € A. It follows that if z € A B, then z € A. Therefore, A\ B C A. O

Proposition 24 Let A and B be sets. Then A is a subset of A B.
Proposition 25 Let A, B, and C be sets. If AC B and B C C, then A C C.

Proposition 26 (Commutative Property) Let S be a set and let A and B
be subsets of S. Then

1. AUB=BUA and

2. ANB =B A.

Proposition 27 (Associative Property) Let S be a set and let A, B, and
C be subsets of S. Then

1. (ANB)NC =ANBNC) and
2. (AUB)UCc=AUBUO).

Proposition 28 (Distributive Property) Let S be a set. Let A, B, and C
be subsets of S. Then

1. (ANB)UC = (AUC)N(BUC) and
2. (AUB)NC=(ANCUBNO).

Proposition 29 Let S be a set and let A be a subset of S. Then

1. AY0=A and
2. AN0=0.

Proposition 30 Let S be a set and let A be a subset of S. Then
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1. AYS =S and
2. ANS=A.

Proposition 31 Let S be a set and let A be a subset of S. Then
1. AU~A=S and
2. AN ~A=0.

Proposition 32 (DeMorgan’s Laws) Let S be a set and let A and B be
subsets of S. Then

1. ~(ANB) =~AlJ ~B, and
2. ~M(AUB) =~A( ~B.

Proposition 33 Let A, B, and C be sets such that A= B and B = C. Then
A=2C.

Logic Rule 34 Let p(z) be a sentence about z and let q be a statement. Then

1. The statement “(there ezists an x such that p(z)) and q” means the same
as “there ezxists an x such that (p(z) and q).”

2. The statement “(for all z, p(z)) or ¢” means the same as “for all z, (p(z)

or q)” and

Let A and S be sets. For each § in A, suppose A; is a subset of S. We define
the following sets:

U As = {z|z € S and there exists a § € A such that x € As, }

deA

ﬂ As = {z|z € S and, for all 6 € A, z € As}.
seA

Note that (Jsc 5 A5 and ()5 As are both subsets of S.

Proposition 35 (Generalized Distributive Property for Sets: Homework)
Let A and S be sets. Let B be a subset of S. For each § in A, suppose As is a

subset of S. Then
(U 4518 =U s B),

sEA deA

and
(N 49UB = NAUB).
seEA deA
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Proposition 36 (Generalized DeMorgan’s Laws for Sets: Homework)
Let A and S be sets. For each é in A, suppose As is a subset of S. Then

~([ 4s) = | (~45),

scA scA
and
~(|J 4s5) = ) (~4).
scA scA

Axiom 37 (Equality Properties for Integers) Let a, b, and c be integers.
Then

Reflexive Property a = a,
Symmetric Property If a = b, then b= a, and

Transitive Property Ifa =b and b= c, then a = c.

Axiom 38 (Closure Property for Integers) If a and b are integers, then
so are a + b and ab.

Axiom 39 (Commutative Property for Integers) If a and b are integers,
then a+ b= b+ a and ab = ba.

Axiom 40 (Associative Property for Integers) Ifa andb are integers, then
(a+b)+c=a+ (b+c) and (ab)c = a(bc).

Axiom 41 (Distributive Property for Integers) If a, b, and c are inte-
gers, then (a + b)e = ac + be.

Axiom 42 (Identity Elements for Integers) Ifa is an integer, then a+0 =
aanda xX1l=a.

Axiom 43 (Additive Inverse of Integers) For each integer a, there ezists
an integer b such that a + b = 0.

The integer b in Axiom 43 is called an additive inverse of a.

Axiom 44 (Equation Rules for Integers) Let a, b, and c be integers such
that a =b. Then a+c=b+ c and ac = be.

Axiom 45 (Cancellation Law for Integers) Ifa, b, and c are integers such
that ac = be and ¢ # 0, then a = b.
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Proposition 46 Let a, b, and c be integers. Then a(b+ c) = ab+ ac.
Proposition 47 If a is an integer, then 0a = 0.

Proof. Let a be an integer. By the Identity Axiom, 0 + 0 = 0. Thus, by the
Equation Rules, (0 + 0)a = Oa. Using the Distributive Property, 0a + 0a = Oa.
Let b be an integer such that 0a+b = 0. Then (0a+ 0a) +b = 0a+ b. Using the
Associative Property, 0a + (0a + b) = Oa + b. Thus 0a + 0 = 0; that is, 0a = 0.
O

Proposition 48 Let a. b, and c be integers. If a+b =0 and a + ¢ = 0, then
b=c.

Proposition 48 tells us that each integer has a unique additive inverse. Let
a an be integer. We will write —a to denote the additive inverse of a. Thus
a+(—a)=0.

Definition 49 Let a and b be integers. We define a — b by

a—b=a+ (-b).

Definition 50 Let a and b be integers. We write a < b if b — a is a natural
number. If a < b, we also write b > a. We also write a < b, or b > a, if either
a<bora=hd.

Proposition 51 Let a be an integer. Then a is a natural number if, and only
if,a >0

Axiom 52 (Closure Property for Natural Numbers) If a and b are nat-
ural numbers, then so are a + b and ab.

Axiom 53 (Trichotomy Law for Integers) For every integer a, either a >
0,a=0, ora<0.

Axiom 54 The integer 1 is a natural number. Moreover, if n is any natural
number, then 1 < n.

Proposition 55 The integer 0 is its own additive inverse.
Proposition 56 Let a be an integer. If —a = a, then a = 0.

Proposition 57 Let a be an integer. Then —la = —a.
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Proposition 58 Let a be an integer. Then —(—a) = a
Proposition 59 Let a and b be integers. Then (—a)(—b) = ab.
Proposition 60 Let a and b be integers. If ab= 0, then a =0 or b= 0.

Proof. Assume that ab = 0. Either a = 0 or a # 0. If a = 0, we are done!
Suppose that a # 0. Then ab = 0 and 0 = Oa. Thus, ab = Oa; that is, ba = Oa.
By the Cancellation Law, we have b = 0. a

Proposition 61 Let a, b, and c be integers. Suppose a < b and ¢ > 0. Then,
ac < be.

Proposition 62 Let a, b, and c be integers. Suppose a < b and ¢ < 0. Then,
ac > be.

Hint. Show that —c > 0.

A set of integers A is said to have a least element [ if [ is a member of A and
forallzin A, < z.

Axiom 63 (Well-ordering Property for Natural Numbers) Every nonempty
subset of the natural numbers has a least element.

Theorem 64 (First Principle of Mathematical Induction) Let S be a sub-
set N which satisfies the following two conditions:

1. 1€ S, and
2. Ifne S, thenn+1€S.

Then S = N.

Hint. Let T be the set of natural numbers not in S. Either T'= 0 or T' # ). If
T = (), we are done!

Theorem 65 (Second Principle of Mathematical Induction) Let S be a
subset of N which satisfies the following two conditions:

1. 1€ S, and

2. For each natural number n, if the set {k|lk € N and k < n} C S, then
nes.

Then, S = N.
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Theorem 66 For each natural number n, let P(n) be a statement. Suppose the
following two statements are true:

1. P(1) is a true statement, and

2. For each natural number n, P(n) implies P(n + 1).

Then P(n) is true for all n.

Theorem 67 For each natural number n, let P(n) be a statement. Suppose the
following two statements are true:

1. P(1) is a true statement, and

2. For each natural number n, if P(k) is true for every natural number k < n
then P(n) is also true.

Then P(n) is true for all n.

Problem 68 Prove that for each natural number n,

_ n(n—i—l).

1+24+3+--+n 5

Problem 69 Prove that for each natural number n,

2 n(n+1)(2n+1)
N 6

P+2243+--+n

Definition 70 Let a, b, and c be integers. We say that a divides b, and write
a | b, if there is an integer ¢ such that b = ac. If a does not divide b, we write

alb.
Proposition 71 Let a, b, and c be integers. If a | b and b | ¢, then a | c.

Proposition 72 Let a, b, ¢, m, and n be integers. If ¢ | a and c | b, then
c| (am + bn).

Lemma 73 Let a and b be integers such that 0 < a < b. Ifb| a, then a = 0.

Theorem 74 (Division Algorithm) Let a and b be integers such that b > 0.
Then there ezxist unique integers q and r such that 0 <r <b and a =bg+r.
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Hint. You must show (1) that g and r exist and (2) that q and r are unique. To
prove part (1), let S be the set of all nonnegative integers of the form a — bk,
where k is an integer. Show that a € S or a — ab € S. Thus S is not empty.
Let r be the least element of S. Continue .... To prove part (2), suppose that
a=bg+r,a=b+7r",and 0 < 7' <r < b. Do some algebra.

Let n be and integer. If 2 | n, then we say n is even. If 2 | n, then we say n is
odd.

Proposition 75 Let a and b be integers with b > 0. Let a = bq + r such that
0<r<b. Thenb|a if, and only if, r = 0.

Theorem 76 (Recursion Principle) Let S be a set. For each natural num-
bern let d,, be a member of S. Suppose the following two conditions are satisfied:

1. d; is defined, and

2. For each natural number n, if d,, is defined then d,11 is also defined.
Then d,, is defined for each natural number n.

Definition 77 Let n be a natural number. We define 0! and n! by
0l =1,

and
n! =n(n— 1)L

Definition 78 Let p be a natural number such that p > 1. We say that p is
prime if the only natural numbers which divide p are 1 and p. If n is a natural
number, n > 1, and n is not prime, then we say that p is composite.

Proposition 79 FEvery natural number greater that 1 has a prime divisor.

Hint. Let S be the set of natural numbers greater that 1 which do not have a
prime divisor. We want S to be empty. Suppose S is not empty ....

Theorem 80 For each natural number n, there is a prime p such that p > n.
Theorem 80 asserts that there are infinitely many primes.

Proposition 81 (Homework) Let n be a natural number. There are consec-
utive integers m,m+1,m+2,...,m+n — 1, none of which are prime.

Conjecture 82 Let n be an even natural number greater than 2. Then there
exist primes p and q such that n = p + q.
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Definition 83 Let a and b be integers such that a # 0 or b # 0. The greatest
common divisor of a and b, ged(a,b), is defined to be that largest natural number
d such that d | a and d | b. That is, if d = ged(a,b), I | a, and 1| b, then I < d.
In addition, gcd(0,0) is defined to be 0.

Observe that ged(a, b) = ged(b, a).
Problem 84 Calculate ged(—48, 36).

Definition 85 Two integers a and b are said to be relatively prime if
ged(a, b) = 1.

Proposition 86 Let a, b, d, m, and n be integers such that d = gcd(a,b),
a=dm, and b=dn. If d # 0, then gcd(m,n) = 1.

Proposition 87 Let a, b, and c be integers. Then gcd(a + be,b) = ged(a, b).

Theorem 88 Let a and b be integers such that a # 0. Let d = gcd(a,b). Then
there exist integers m and n such that d = ma + nb.

Hint. Note that d # 0. Let S = {za + yb|z,y € Z and az + by > 0}. Show that
S # 0. Let I be the least member of S. Write I = ma + nb where m,n € Z. Use
the division algorithm to show that [ | a. Similarly, [ | b. This one may take
some work.

Proposition 89 Let a, b, d, and k be integers. Assume that d = gcd(a,b),
k|a, and k| b. Then k| d.
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Theorem 90 (Euclid, c. 350 B.C.) Let a, b, q, and r be integers such that
0<r<banda=>bqg+r. Then

ged(a, b) = ged(a, r).
Problem 91 (Homework) Find gcd(102,222) and ged(20785,44350).

Lemma 92 Let a, b, and c be natural numbers. If ged(a,b) = 1 and a | be,
then a | c.

Lemma 93 Suppose p is prime and a3, ag, ..., a, are all natural numbers. If
D | aias---ayn, then there is a integer i such that 1 <i<n andp| a;.

Hint. You will need to use Theorem 67 applied to n, the number of factors a1,
az, ---, Gn, and Lemma 93. Show things work for n = 1 and n = 2. Assume
that for 2 < k < nif p | a1az - - - ag, then there is a integer i such that 1 <7 < k
and p | a;. Prove that if p | ajas---ay,, then there is a integer ¢ such that
1<i<nandp]|a;.

We’ve got the biggie coming up next time.
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Theorem 94 (The Fundamental Theorem of Arithmetic) Letn be a nat-
ural number greater than 1. There exist a unique natural number k and unique
primes Py, Py, ..., P, such that P, < P, <...< P, and

‘TL:P1P2 Pk

We will prove this one in class.

The factorization n = P; P, --- P, in the Fundamental Theorem is called the
prime factorization of n. Usually, we write the prime factorization of n in the
form

n=prpg - o
where m is a natural number, l,1s,..., ., are natural numbers, pi, p2,- .-, Pm
are primes, and p; < p2 < *++ < Py
Problem 95 Write the prime factorization of 15444.

Definition 96 Let A and B be sets. We define the Cartesian Product of A and
B, A x B to be the collection of all pairs (a,b) such that a is a member of A
and b is a member of B. We call (a,b) an ordered pair.

Axiom 97 Let A and B be sets. Then A X B is a set.

In light of Axiom 97 we may write

A x B={(a,b)la € A and b € B}.

Axiom 98 Let A and B be sets. Let (a,b) and (c,d) be members of A x B.
Then (a,b) = (¢, d) if, and only if, a = c and b = d.

Problem 99 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. List the members of
A x B.

Definition 100 Let A and B be sets. A subset f of A x B is said to be a
function (or map) from A into B if the following two conditions are satisfied:

1. For each a € A, there ezists b € B such that (a,b) € f, and

2. For each a € A and for all by, by € B, if (a,b1) € f and (a,b3) € f, then
by = bs.

If f is a function from A into B, we write f: A —> B. The set A is called the
domain of f. If (a,b) € f, we write b= f(a). The set

{b € B| There exists a € A such that b= f(a)}

is called the range of f.
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Problem 101 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. Let f = {(a,i),(b,1),(c,a),(d,1), (e,e)}.

1. Is f a function from A into B?
2. Find the domain of f.

8. Find the range of f.

4. Find f(d).

Problem 102 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. Let f = {(a,e),(b,a),(c,0),(e,a)}.
Is f a function from A into B? Ezplain your answer.

Problem 103 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. Let f = {(a,e),(b,a),(c,0),(c,a),(d,u), (e,a)}.
Is f a function from A into B? Ezplain your answer.

Problem 104 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. Let f = {(a,a), (b,b),(c,c), (i,1),(d,d), (e,€)}.
Is f a function from A into B? Ezplain your answer.

Definition 105 Let f: A —> B be a function. f is defined to be one-to-one,
1-1, if the following condition is satisfied:

For all a1 and a3 in A and b in B, if (a1,b) € f and (az,b) € f,
then a1 = as.

Problem 106 Let A = {w,z,y,2} and B = {a,e,i,0,u}. Give ezamples of
two functions from A into B, one of which is 1-1 and one that is not.

Definition 107 Let f: A — B be a function. f is defined to be a function
from A onto B if the following condition is satisfied:

For each b in B, there is an a in A such that (a,b) € f; that is,
b= f(a).

Problem 108 Let A = {u,v,w,z,y,2} and B = {a,e,i,0,u}. Give ezamples
of two functions from A into B, one of which is from A onto B and one that is
not.

Problem 109 Let A = {u,v,w,z,y,2} and B = {a,e,i,0,u}. Is there a 1-1
function from A into B? Ezplain your answer.

Problem 110 Let A = {w,z,y, 2} and B = {a,e,i,0,u}. Is there a function
from A onto B? Ezxplain your answer.
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Problem 111 Let A = {a,b,c,d,e} and B = {a,e,i,0,u}. Find a 1-1 function
from A onto B.

Definition 112 Let g: A — B and f: B — C be functions. We define the
composition of f and g, f o g, to be the set

{(a,c)|a € A, c € C, and there exists b € B such that (a,b) € g and (b,c) € f}.

Proposition 113 Let g: A — B and f: B — C be functions. Then fog
is a function from A into C.

Proposition 114 (Homework) Let g: A — B and f: B — C both be 1-1
functions. Then f o g is also a 1-1 function.

Proposition 115 (Homework) Letg: A — B and f: B — C be functions
from A onto B and from B onto C respectively. Then f o g is a function from
A onto C.

Definition 116 Let f: A — B be a function. Define f~! by

7 ={(a)l(a;d) € f}.

The set f~1 is called the inverse of f.

Proposition 117 Let f: A — B be a 1-1 function from A onto B. Then
f~!is a 1-1 function from B onto A.

Hint. You need to show that f~! is a function, f ! is 1-1, and f~! is onto.

Proposition 118 (Homework) Let f: A — B be a 1-1 function from A
onto B. Then (f~1)~' = f.

Proposition 119 Let f: A— B and g: A —> B be functions. Then f = g
if, and only if, for all a in A, f(a) = g(a).

Proposition 120 Leth: A— B, g: B— C, and f: C — D be functions.
Then fo(goh)=(fog)oh.

Definition 121 Let A and B be sets, and let n be natural number.

1. We say that |A| < |B| if there is a 1-1 function from A into B.

2. We say that |A| = |B| if |A| < |B| and |B| < |A].
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3. We say that |A| < |B| if |A| < |B|, but there is not a 1-1 function from
B into A.

4. We say that |A| = n if there is a 1-1 function from A onto the set
{z|z € N and =z < n}.

5. We define |0| by |0] = 0.
The notation |A| is called the cardinality of A. Note that |A| = |B| if, and only

if, |B| = |A|. We say that A is a finite set if |A| = n. If A is not finite, we say
that A is infinite.

We will not prove the next theorem.

Theorem 122 (The Schréder-Bernstein Theorem) Let A and B be sets.
Then |A| = |B| if, and only if, there is a 1-1 function from A onto B.

Proposition 123 Let A be a set. Then |A| = |A].

Proposition 124 Let A, B, and C be sets. If |A| < |B| and |B| < |C|, then
|A| <|C|. Moreover, if |A| = |B| and |B| = |C|, then |A| =|C|.

Definition 125 Let A be an infinite set. We say that A is countable if
|A| = |N|. If A is not countable, we say that A is uncountable.

Proposition 126 The set Z is countable.
Proposition 127 The set Z x Z is countable.
Proposition 128 The set of even natural numbers, 2N, is countable.

Proposition 129 Let A be a countable set. Let B be an infinite subset of A.
Then B is countable.

Proof. Write A = {a1,a2,...,an,...}. Let i1 be the least natural number such
that a;, € B. Let iy be the least natural number such that a;, € B[\ ~{a;, }.
Let i3 be the least natural number such that a;, € B ~{a;,,ai, }- In general,
let ix be the least natural number such that a;, € B[] ~{ai,,@ipy---,Qi,_, }- It
follows that we may write B = {ai,,a;,,...,a;,....}. Define f: N — B by
f(k) = a;,. Note that f is a 1-1 function from N onto B. Thus |B| = |N|.

Axiom 130 (Principle of Addition) Let A and B be sets such that A(\ B =
0. Let m and n be natural numbers. If |A| = m and |B| = n, then |[A|JB| =
m+n.

Axiom 131 (Principle of Multiplication) Let A and B be sets. Let m and
n be natural numbers. If |A| = m and |B| = n, then |A x B| = mn.
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Problem 132 (Homework) Let A = {a,b,c,d} and B = {e, f,g,h,i}. Find
AU B.

Problem 133 (Homework) Let A = {a,b,c,d} and B = {b,d,e, f}. Find
AU B

Problem 134 (Homework) Let A = {a,b,c,d} and B = {e, f,g,h,i}. Find
|A x B].

Problem 135 (Homework) Let A = {a,b,c,d} and B = {b,d,e, f}. Find
|A x B].

Problem 136 (Homework) Let A be a set. Find |A x 0.

Definition 137 Let A be a set. A subset R of Ax A is said to be an equivalence
relation on A if the following conditions are satisfied:

Reflexive Property For each a € A, (a,a) € R,

Symmetric Property For all a,b € A, if (a,b) € R, then (b,a) € R, and

Transitive Property For all a,b,c € A if (a,b) € R and (b,c) € R, then
(a,c) € R.

Problem 138 Let A = {a,b,c,d}. Let

R = {(a,a),(a,c),(a,d),(c,a), (c,c),(c,d),(d,a),(d,c),(d,d)}.

Is R and equivalence relation on A?

Problem 139 Let A = {a,b,c,d}. Give an example of a subset of A x A
which satisfies the reflexive and symmetric properties, but is not an equivalence
relation.

Problem 140 Let A = {a,b,c,d}. Give an example of a subset of A x A
which satisfies the symmetric and transitive properties, but is not an equivalence
relation.

Problem 141 Let A = {a,b,c,d}. Give an example of a subset of A x A which
satisfies the reflexive and transitive properties, but is not an equivalence relation.

Problem 142 Let A be a set. Let R = A x B. Is R an equivalence relation on
A?
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7.1 Introduction to the instructor

These notes are intended for a course in which students may be proving theorems
on their own for the first time. One axiomatic development for the numbers takes
number,<,+, and * as primitive words, and establishes axioms that guarantee
a field structure for + and * on the set of numbers; establishes < to be an
order on the set of numbers which is Dedekind complete, has no maximum nor
minimum, and admits a denumerable subset of the numbers which is dense in it;
and connects the algebra of + and * to the geometry of <. For students who are
truly naive mathematically, this gives little context for making examples since
they may have only a vague recognition that the numbers they use as tools even
have these properties. In these notes, the mathematical content addresses the
question “Can we define objects, establish a comparison principle among them,
and impose an algebra on them so that if the objects are interpreted as numbers,
the comparison principle is used to define <, and the algebra used to define +
and * , then the statements for the axioms can be demonstrated to be true for
these meanings?”

In these notes, a fraction model is pursued. The students are given that the
natural numbers exist and questions of number theory may be deflected or
pursued as the instructor chooses. Students are given the natural numbers
and addition, multiplication, subtraction, and division on the natural numbers
along with the admonition that, whereas addition and multiplication always
make sense, 5 — 3 is okay, but 3 — 5 is not, and 9 + 3 makes sense, but 5 + 3
does not since neither 3 — 5 nor 5 + 3 is a natural number. My general choice
is to accept those statements the students make about number theory that are
actually true as true. I typically grant the infinitude of the primes, unique prime
factorization, and the Euclidean algorithm. However, in a recent semester, a
student proved the Euclidean algorithm as a part of an argument; I was glad I
had not given the class that theorem. Sometimes I ask for a proof, particularly
if a proof would be likely to afford an opportunity to teach a proof technique
(such as finite induction). Working within the fraction model gives fruitful
opportunities for application of number theory theorems and students often
make arguments about the number theory in the context of arguing about the
model.

The problem set is designed so that even a class which plods will be exposed to
ideas of comparing sets, imposing an order on a set, and imposing an algebra on
a set. A class that experiences success from the beginning can be expected to
get at least to the point of recognizing that the fraction model is not Dedekind
complete. I teach these notes as a one-semester course. I have taught classes
that extended the order to the completion, but I have never had a class get
through the corresponding extension of the algebra to the completion.

The story line for the course goes like this:

e Defining a fraction consists of specifying the numerator and denominator.
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e With the comparison principle from classical geometry, the product of the
extremes is less than the product of the means, different objects may not
be comparable.

e Having corrected this flaw, the set admits an order with no minimum and
no maximum and with the property that between any two elements is
another element.

e Using the algebra algorithms from grade school arithmetic and being care-
ful, the set admits an order-preserving semigroup which lacks an identity
element, and admits a multiplication which is a group and distributes over
the semigroup.

e The set fails to have the Dedekind cut property for its comparison princi-
ple.

e Correct the flaw and make the necessary adjustments to the algebra.
Meanwhile, we are also counting sets.

e The natural numbers are shown to be infinite.
e Segments are shown to be as large as the entire set.

e The natural numbers are discovered to be as large as the (pre-Dedekind)
set.

e The natural numbers are shown to be not as large as any Dedekind-
complete set.

Instructors considering using these notes for a course should be aware of certain
intentional idiosyncrasies built into them. I do not forbid my students to use
books or any non-human sources they can find. I don’t encourage it either —
if they ask if it is okay, I just tell them to make sure it doesn’t keep them from
solving problems. I do consciously make the problem set so that I think it is
simpler to work on the problems directly than to find an appropriate source
and make the necessary translations. Thus some very standard problems may
be cast in molds that are not immediately recognizable. For instance “the
fraction with numerator 3 and denominator 4” is (3,4) in the model. If students
don’t realize this before encountering the density problem, sit back and enjoy
how creative they get in building a replacement for the midpoint formula. The
longer it takes, the more opportunities you will get to appreciate how rich the
order structure for the rational numbers is when liberated from its algebra,
because the students will think of the objects in ways those of us with too much
education can’t even imagine. Of course, once a student makes this connection,
grade school arithmetic becomes an available source for intuition and more
rapid progress will be made through the notes. However, I consider having
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the student make that connection her/himself inviolate, and I would neither
confirm nor deny the connection if asked. My standard response would be,
“What I do know is that the definitions mean what the definitions say.” As
another example, I use “x and y are elements” and “each of x and y is an
element” to distinguish contexts that are typically explained in books using the
word distinct. Besides being correct, (distinct may also be used correctly, even if
it is often used redundantly) the usage allows me to teach lessons about language
I consider important. I use the term “the numbers” where most sources use the
term “the real numbers”. This is not important; I just do not like to miss a
chance to voice my own personal prejudice that the complex numbers are every
bit as real as the “real numbers”. I don’t want to be personally responsible
for perpetuating the adjective “imaginary” when it might be interpreted by the
unlearned as being an opposite in some sense to “real.”

Since progress through these notes depends on the students finding the conjec-
tures which are not theorems and then addressing the issues raised in trying to
produce structures about which the conclusions are true, the instructor must
exercise some care in when access to subsequent pages is granted to the students.
Also, students often uncover theorems while working on problems, and theorems
can often be sifted out of students’ arguments; these make nice addenda to the
notes. I have included some examples from a past class of mine in Section 10.4.
Keep in mind that these are merely statements of theorems that the students’
proofs turned up; the students may not have stated the theorem that way and
the theorem itself may not have solved the problem it addressed. Section 10.5
contains remarks about particular problems or definitions and possible timing
schemes for presenting the problems. I have taught Mathematics 315 at James
Madison University using some form of the notes to follow many times. In this
section, I have tried to give the benefit of some of my experience without be-
ing too heavy-handed about what “ought” to happen. It is my hope that the
remarks might help with the order in which the problems should be presented.
The order I have given need not be the optimal sequence for a particular class.

I give only one test in this course, the final examination. I offer one credit each
time a student presents an argument for a problem that the class judges as being
correct. If a student has a problem that someone else presents, that student is
allowed to turn in her/his write-up at the end of the class period in which the
problem was finished. If the write-up is correct, the student gets one-half of a
credit. To discourage note taking and to encourage the students to think back
through what they have seen, I offer myself as a source for any problem that has
been solved by the class. This way, if a student cannot reproduce an argument,
I am a safety net for their being able to see the proof again, and if necessary,
again, and ... The final examination is given as a take-home, use your notes
but nobody else’s, test. It consists of a section of problems solved during the
semester and a section of problems that the students have either not yet solved
or have not yet seen. Successful proofs for the problems proven during the
course allow students to make C or to keep whatever grade their work during
the semester warranted. Successful work on the second section allows a student
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to increase her/his grade or to atone for slip-ups on the first section.

7.2 Introduction to students - An Introduction
to Doing Mathematics

In this course, not only will you be responsible for understanding why the math-
ematics we cover is correct, but the responsibility for discovery will also be
assigned to the class. One of the immediate results of this responsibility for
doing mathematics yourself rather than just learning how someone else did it
will likely be an acute awareness of the difference between the challenge associ-
ated with understanding why something is correct and discovering for yourself
whether or not a conjecture is a theorem.

Doing mathematics can be extremely exhilarating when one succeeds in the
discovery process; failing to do mathematics when one is putting in the time
trying to do mathematics can be extremely frustrating. This introduction is
designed to alert you to some tips that are designed to optimize the chances for
success.

First, you must put in the time necessary to give your creative intelligence a
chance to work. Flashes of insight typically occur after information is organized
and mulled over. Commitment to solving problems often leads to help from the
subconscious. Students often tell me that they got “the big idea” while walking
across campus or after turning in for the night.

Second, solutions to problems need not come all at once. You may need to
solve many small problems on the way to proving a theorem or disproving an
incorrect conjecture. Some of the most important work in mathematics is the
creation of technique. Take pride in progress toward a goal as well as reaching
the goal. Any information you uncover is more than you knew before, and
solving a problem is usually just a matter of putting together enough small
solutions to allow you to see why the big problem is correct.

Students often tell me that they would be glad to put in the time if they just
knew where to start. The following scheme is offered toward that end.

The awareness stage

1. Identify all the words in the problem and make sure that you know the
definition of each of them. Try to recall examples that have dealt with these
notions before. If a definition is new, make some examples for the definition.

2. Identify any theorems that may have already dealt with ideas present in the
problem. Put techniques that gave rise to proofs in those contexts firmly in
mind.
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The direct approach

3. Make an example that models the hypothesis to the problem and try to show
that the example exhibits the properties of the conclusion. (If you can prove
that your example fails to have the properties of the conclusion, you will have
shown that the problem is not a theorem!)

4. See if what allowed you to establish the conclusion in the example is a
property of all examples covered by the hypothesis. If it is, write a proof. If
not,

5. ...make an example which models the hypothesis but fails to have whatever
special properties you used to get the conclusion in the previous example. Go
to 3.

The indirect, or contrapositive approach

6. Suppose that the conclusion is false and try to show that the hypothesis must
be false as well. If the problem is not a theorem, any conclusions you get must
be qualities an example that disproves the conjecture must have.

7. Try to be aware of properties that, if they were added to the hypothesis, would
guarantee the conclusion. Alternatively, you might also try to find conclusions
that follow from the hypothesis, even if they do not include the one you seek.
Even if you are not able to solve the problem as stated, you may be able to
create a substitute theorem.

The main mindset is to be aware that even when arguments do not come quickly
or easily, the hunt itself may be an important learning experience. Working on
problems yourself is the central ingredient. Not only will it provide you with
theorems that are “your own,” but even when someone beats you to a solution,
it will put you in a much stronger position to analyze the argument given.

A theory of sets and ordered pairs

We will not create an axiomatic set theory. Following, however, is an idiomatic
presentation of some conventions that axiomatic set theory implies. We presup-
pose the existence of formal English as a language for expressing properties.

The primitive words are set, element, ordered pair, first co-ordinate, and second
co-ordinate.
i. A set consists of an element or elements.

ii. An element of a set and the set consisting of that element are different
objects.

iii. A set is defined by stating the properties its elements have. (The plural
has been chosen here, but the definition of a set may be made by stating
a single property and a set may have a single element.)
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iv. Given a definition for a set, any object having the properties specified is an
element of the set; and any element of the set has the properties specified
in the definition.

v. An ordered pair consists of a first co-ordinate and a second co-ordinate.

vi. The first co-ordinate of an ordered pair may be the same set-theoretic
object as the second co-ordinate, but as a part of the ordered pair, being
the first co-ordinate is distinguishable from being the second co-ordinate.

We reserve a notation for the creation of definitions of sets and for defining
ordered pairs.

Reserved symbols for definitions of sets are { : }. A symbol is created to follow
the open brace and precede the colon and then properties that an element must
have are stated in terms of that symbol after the colon and before the closed
brace. Thus

{z : z is a number and z > 5}

stands for “the set to which an element belongs provided that it is a number
and it is greater than 5.”

Reserved symbols for definitions of ordered pairs are (, ). The first co-ordinate
of the ordered pair is written after the open parenthesis and before the comma;
the second co-ordinate of the ordered pair is written after the comma and before
the closed parenthesis. Thus (p,5) stands for the ordered pair whose first co-
ordinate is p and whose second co-ordinate is 5.

The purpose of this course is to build a model for the numbers. Our ultimate
goal is to prove that the statements which are typically taken as axioms for the
numbers are theorems in our model. In an axiomatic treatment, number, <, +,
and * are taken as primitive words; thus we provide definitions within the model
so that if they are interpreted as the primitive words, the statements made by
replacing the primitive words in the axioms with their analogues in the model
become the topics of consideration.

You may assume that the natural numbers exist and have whatever properties
number theory says they do. If there is doubt about a property of the natural
numbers, we will either prove the property or indicate what property we are
assuming.

7.3 Problem Sequence

Definition 1 Suppose that each of X and Y is a set. The statement that fis a
function from X into Y means that f is a set so that

i. each element of f is an ordered pair whose first co-ordinate is an element
of X and whose second co-ordinate is an element of Y; and
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ii. if p is an element of X, then there is an element of f whose first co-ordinate
is p; and

iii. if p and q are elements of f, then the first co-ordinate of p is not the first
co-ordinate of q.

Notation: If f is a function from X into Y and (p,q) is an element of f, then
we may write f(p) = q.

Definition 2 Suppose that each of X and Y is a set and that f is a function
from X into Y. The statement that M is the range of f means that M is the
set to which an element belongs provided that there is an element of f of which
it is the second co-ordinate.

Problem 1 Suppose that X is a set with more than one element!. Show that
the set to which an element belongs provided that it is an ordered pair whose
first co-ordinate is an element of X and whose second co-ordinate is an element
of X is not a function from X into X.

Definition 3 Suppose that X is a set and that L is a set each element of which
is an ordered pair whose first co-ordinate is an element of X and whose second
co-ordinate is an element of X. The statement that L is an order on X means
that

i. if p is an element of X, then (p,p) is not an element of L; and

ii. if p and q are elements of X, then (p,q) is an element of L or (q,p) is an
element of L; and

iii. if (p,q) and (q,r) are elements of L, then (p,r) is an element of L.

Problem 2 Suppose that X is a set with exactly one element. Show that there
is no order on X.

Problem 3 Suppose that X is a set with more than one element and that L is
an order on X. Show that L is not a function from X into X.

Definition 4 U is the set to which an element belongs provided that it is an
ordered pair each of whose co-ordinates is a natural number.

1That X has more than one element means that if p is an element of X, then there is an
element of X different from p.
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Definition 5 Suppose that (a,b) and (x,y) are elements of U. The statement
that (a,b) precedes (x,y) means that a * y is less than x * b.

Definition 6 G = {(p,q) : p is an element of U, and q is an element of U, and
p precedes q}.

Problem 4 Suppose that x is an element of U. Show that there is an element
of U, call such an element y, so that (x,y) is an element of G.

Problem 5 Suppose that x is an element of U. Show that there is an element
of U, call such an element y, so that (y,x) is an element of G.

Problem 6 Suppose that x and y are elements of U and (x,y) is an element of
G. Show that there is an element of U, call such an element w, so that (x,w)
and (w,y) are elements of G.

Problem 7 Show that G is an order on U.

Definition 7 Suppose that each of X and Y is a set. The statement that X
commands Y means that there is a function from X into Y whose range is Y.

Problem 8 Show that U commands the natural numbers.

Definition 8 Suppose that each of X and Y is a set. The statement that X is
a subset of Y means that if p is an element of X, then p is an element of Y.

Problem 9 Suppose that each of X and Y is a set and that X is a subset of Y.
Show that Y commands X.

Problem 10 Suppose that X and Y are sets and that X is a subset of Y. Show
that it is not the case that X commands Y.

Definition 9 Suppose that each of X and Y is a set and that there is an element
of X which is an element of Y. The intersection of X with Y is {x: xis an
element of X and x is an element of Y}.

Notation: X N'Y stands for “the intersection of X with Y”.
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Definition 10 Suppose that X is a set, L is an order on X, and a and b are
elements of X so that (a,b) is an element of L, and there is an element of X, call
such an element c, so that (a,c) is an element of L and (c,b) is an element of L.
The segment from a to b by L is {x : (a,x) is an element of L and (x,b) is
an element of L}.

Notation: If (a,b) is an element of the order L, then (a,b) stands for “the
segment from a to b by L”.

Problem 11 Suppose that x is an element of U. Show that there is a segment
by G so that x is an element of it.

Problem 12 Suppose that X is a set, L is an order on X, (p,q) and
segments by L, and x is an element of (p,q) N (r,s). Show that (p,q) N
segment by L.

(z,s) are
Q,si is a

Problem 13 Suppose that x and y are elements of U and that G is an order
on U. Show that there are segments by G, call them P and Q, so that

i. x is an element of P,
ii. y is an element of Q, and

iii. if w is an element of P, then w is not an element of Q.

Definition 12 Suppose that each of X and Y is a set. The union of X with
Y is {p : p is an element of X or p is an element of Y}.

Notation: X U Y stands for “the union of X with Y”.

Definition 13 Suppose that X is a set, L is an order on X, and T and V are
subsets of X. The statement that (T,V) is a cut of X by L means that

i TUV =X, and

ii. if x is an element of T and y is an element of V, then (x,y) is an element
of L.

Problem 14 Suppose that X is a set, L is an order on X, and (A,B) is a cut of
X by L. Show that if p is an element of A, then p is not an element of B.
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Problem 15 Suppose that X is a set and L is an order on X. Show that there
is a cut of X by L.

Problem 16 Suppose that X is a set, L is an order on X, and (p,q) is an element
of L. Show that there is a cut of X by L, call it (A,B), so that p is an element
of A and q is an element of B.

Definitions 14 Suppose that X is a set, L is an order on X, p is an element of
X, and M is a subset of X. The statement that p is the max of M by L means
that p is an element of M, and if q is an element of M different than p, then
(a,p) is an element of L. The statement that p is the min of M by L means
that p is an element of M, and if q is an element of M different than p, then
(p,q) is an element of L.

Definition 15 Suppose that X is a set and L is an order on X. The statement
that L has the Dedekind cut property means that if (A,B) is a cut of X by
L, then

i. A has a max by L or B has a min by L and
ii. it is not the case that both A has a max by L and B has a min by L.

Problem 17 Suppose that L = {(x,y) : x is a natural number, y is a natural
number, and x < y}. Show that L does not have the Dedekind cut property.

Definition 4’ U’ = {(x,y) : (x,y) is an element of U; and if each of a and b is
a natural number so that a > 1 and a * b = x, and each of ¢ and d is a natural
number so that y = ¢ * d, then a is not ¢ and a is not d}.

Definition 6° G’ = {(p,q) : p is an element of U’, q is an element of U’, and p
precedes q}.

Problem 4’ Suppose that x is an element of U’. Show that there is an element
of U, call such an element y, so that (x,y) is an element of G’.

Problem 5’ Suppose that x is an element of U’. Show that there is an element
of U, call such an element y, so that (y,x) is an element of G’.

Problem 6’ Suppose that x and y are elements of U’ and (x,y) is an element of
G’. Show that there is an element of U’, call such an element w, so that (x,w)
and (w,y) are elements of G’.
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Problem 7’ Show that G’ is an order on U’.
Problem 8’ Show that U’ commands the natural numbers.

Problem 11° Suppose that G’ is an order on U’ and that x is an element of
U’. Show that there is a segment by G’ so that x is an element of it.

Problem 18 Suppose that

T = {(p,q) : (p,q) is an element of U’ and p * p < 2 * q * q} and
V = {x: x is an element of U’ and x is not an element of T}.
Show that (T,V) is a cut of U’ by G’.

Problem 19 Suppose that
T = {(p,q) : (p,q) is an element of G’ and p * p < 2 * q * q} and
V = {x: x is an element of G’ and x is not an element of T}.

Possible conclusion i: T has a max by G’.
Possible conclusion ii: V has a min by G’.

Possible conclusion iii: T does not have a max by G’ and V does not have
a min by G’.
Problem 20 Show that

Possible conclusion i: it is not the case that U’ commands U.

Possible conclusion ii: U’ commands U.

Problem 21 Show that

Possible conclusion i: it is not the case that N commands U’.

Possible conclusion ii: N commands U’.

Problem 22 Suppose that (x,y) is an element of G’.

Possible conclusion i: Show that it is not the case that (x,y) commands U’.

Possible conclusion ii: Show that (x,y) commands U’.
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Definition 16 p = {((x,y),(p,q)),2z) : (x,y) is an element of U’, (p,q) is an
element of U, and z = ((x * q) + (p * y),y * a)}

Problem 23 Show that p is a function from
{(x,y) : x is an element of U’ and y is an element of U’} into U’.

Definition 17 7 = {((x,y),(p,q)),z) : (x,y) is an element of U’, (p,q) is an
element of U’, and z = (x * p,y * q)}

Problem 24 Show that 7 is a function from
{(x,y) : x is an element of U’ and y is an element of U’} into U’.

Definition 18 Suppose that (x,y) is an element of U’. EC(, ,) =
{(p,q) : there is a natural number, call it k, so that p = k * x and q = k * y}.

Problem 25 Suppose that (x,y) is an element of U. Show that there is an
element of U, call it w, so that (x,y) is an element of EC,,.

Problem 26 Suppose that (p,q) and (x,y) are elements of U’ and that (r,s) is
an element of EC(; 4. Show that (r,s) is not an element of EC, ).

Problem 27 Suppose that (p,q) and (x,y) are elements of U’ so that ((p,q),(x,y))
is an element of G’, and (r,s) is an element of EC, ) and (w,z) is an element
of EC(4,y). Show that ((r,s),(w,z)) is an element of G.

Definition 16’ p’ = {((x,y),(p,a)),z) : (x,y) is an element of U’, and (p,q) is
an element of U’, and z is an element of U’, and ((x * q) + (p * y),y * q) is an
element of EC,}

Problem 23’ Show that p’ is a function from {(x,y) : x is an element of U’ and
y is an element of U’} into U’.

Definition 17’ 7’ = {((x,y),(p,q)),z) : (x,y) is an element of U’, and (p,q) is
an element of U’, and z is an element of U’, and (x * p,y * q) is an element of
EC.}

Problem 24’ Show that 7’ is a function from
{(x,y) : x is an element of U’ and y is an element of U’} into U’.
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Problem 28 Suppose that x and y are elements of U’.
Show that p,((X,Y)) = p’((y,x))-

Problem 29 Suppose that x and y are elements of U’.
Show that 7’((x,y)) = 7'((y,x))-

Problem 30 Suppose that each of x, y, and z is an element of U’.

Show that p’((0’((x.¥)),2) = p'((x, P’((32))))-

Problem 31 Suppose that each of x, y, and z is an element of U’.

Show that 7°((7((x,y)),2)) = 7’ ((x7°((,2))))-

Problem 32 Suppose that each of x, y, and z is an element of U’.

Show that 7°((x,0’((y:2)))) = (7 ((xy)), 7'((x,2))))-

Problem 33 Show that there is an element of U’, call such an element (, so

that if x is an element of U’, then p’((x,{)) = x and p’(({,x)) = x.

Problem 34 Show that there is an element of U’, call such an element p, so

that if x is an element of U’, then 7’((x, p)) = x and 7’((1,x)) = x .

Problem 35 Suppose that x and y are elements of U, (x,y) is an element of G’,
and z is an element of U’. Show that (p’((x,2)), 0’((y,2))) is an element of G’.

Problem 36 Suppose that x and y are elements of U’ so that (x,y) is an element
of G’. Show that there is exactly one element of U’, call it q, so that p’((x,q)) =y

Problem 37 Suppose that x is an element of U’. Show that there is exactly

one element of U’, call it y, so that 7((x,y)) = (1,1).

Definition 4” U” = {x : x is an element of U’; or
there is a cut of U’ by G’, call it (A,B), so that

A has no maximum by G’ and

B has no minimum by G’, and x = A}.

Definition 6” G” = {(x,y) : x and y are elements of U”; and
if x and y are elements of U’, then (x,y) is an element of G, or
if x is an element of U’ and y is not an element of U’,

then x is an element of y, or
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if x is not an element of U’ and y is an element of U’,
then y is not an element of x, or
if neither x nor y is an element of U’, then x is a subset of y}

Problem 4” Suppose that x is an element of U”. Show that there is an element
of U”, call such an element y, so that (x,y) is an element of G”.

Problem 5” Suppose that x is an element of U”. Show that there is an element
of U”, call such an element y, so that (y,x) is an element of G”.

Problem 6” Suppose that x and y are elements of U” and (x,y) is an element
of G”. Show that there is an element of U’, call such an element w, so that
(x,w) and (w,y) are elements of G”.

Problem 7” Show that G” is an order on U”.
Problem 38 Show that G” has the Dedekind cut property.

Problem 22” Suppose that (x,y) is an element of G”. Show that (x,y) com-
mands U”.

Definition 19 Suppose that X is a set, L is an order on X, and (p,q) is an
element of L. The interval from p to q by L is {x : x is an element of gp,qz,
or x is p,or x is q}.

Notation: If (p,q) is an element of the order L, [p,q] stands for “the interval
from p to q by L”.

Definition 20 Suppose that X is a set. The statement that s is a sequence
in X means that s is a function from the natural numbers into X.

Problem 39 Suppose that M = {x : there is an element of G”, call it (p,q), so
that x = [p,q]}. Show that there is a sequence in M, call such a sequence f, so
that if n is a natural number then, then f(n+1) is a subset of f(n).

Problem 40 Suppose that (A, B) is an element of G” and x is an element of
U” so that x is an element of (A,B). Show that there is an element of G”, call
it (p,q), so that [p,q] is a subset of KA,B) and x is not an element of [p,q].

Problem 41 Suppose that
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M = {x : there is an element of G”, call it (p,q), so that x = [p,q]},

s is a sequence in M so that if k is a natural number, then

s(k+1) is a subset of s(k), and

A = {x : there is a natural number, call it k, so that

if p is an element of s(k), then (x,p) is an element of G”}.

Show that (A,{x : x is an element of U” and x is not an element of A})
is a cut of U” by G”.

Problem 42 Suppose that

M = {x : there is an element of G”, call it (p,q), so that x = [p,q]},

s is a sequence in M so that if k is a natural number, then

s(k+1) is a subset of s(k). Show that there is an element of U”, call it w, so
that if k is a natural number, then w is an element of s(k).

Problem 43 Show that the natural numbers do not command U”.

Problem 44 Suppose that (A,B) is a cut of U’ by G’ so that A has no max
by G’, p is an element of U’, and C = {x : x is an element of A, or there is an
element of A, call it q, so that x = p’((p,q))}- Show that C has no max by G’.

Problem 45 Suppose that (A,B) is a cut of U’ by G’ so that A has no max
by G’, p is an element of U’, and C = {x : x is an element of A, or there is an
element of A, call it q, so that x = p’((p,q))}- Show that

(C,{x : x is an element of U’ and x is not an element of C}) is a cut of U’ by G’.

Problem 46 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
G’, that (D,E) is a cut of U’ by G’ so that D has no max by G’, and that C =
{x : x is an element of A, or there is an element of A, call it p, and an element
of D, call it g, so that x = p’((p,q))}. Show that C has no max by G’.

Problem 47 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
G’, that (D,E) is a cut of U’ by G’ so that D has no max by G’, and that C =
{x : x is an element of A, or there is an element of A, call it p, and an element
of D, call it q, so that x = p’((p,q))}. Show that

(C,{x : x is an element of U’ and x is not an element of C}) is a cut of U’ by

G.

Problem 48 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
G’, p is an element of U’, and C = {x : there is an element of A, call it g, so
that x = 7’((p,q))}. Show that C has no max by G’.

Problem 49 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
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G, p is an element of U’, and C = {x : there is an element of A, call it g, so
that x =7’((p,q))}. Show that

(Cy{x : x is an element of U’ and x is not an element of C}) is a cut of U’ by
G’

Problem 50 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
G’, that (D,E) is a cut of U’ by G’ so that D has no max by G’, and that

C = {x : there is an element of A, call it p, and an element of D, call it q,

so that x =7’((p,q))}. Show that C has no max by G’.

Problem 51 Suppose that (A,B) is a cut of U’ by G’ so that A has no max by
G’, that (D,E) is a cut of U’ by G’ so that D has no max by G’, and that

C = {x : there is an element of A, call it p, and an element of D, call it q, so
that

x =7’((p,q))}. Show that

(Cy{x : x is an element of U’ and x is not an element of C}) is a cut of U’ by
G.

Definition 16” p” = {((x,y),z) : x is an element of U” and y is an element of
U”; and if each of x and y is an element of U’, then z = p’((x,y)), or

if x is an element of U’ and y is not an element of U’, then

z = {w : w is an element of y, or there is an element of y, call it g, so that w =
P ((%,q))}}, or

if x is not an element of U’ and y is an element of U’, then

z = {w : w is an element of x, or there is an element of x, call it q, so that w
= p’((a:y))}}, or

if x is not an element of U’ and y is not an element of U’, then

z = {w : w is an element of x; or there is an element of x, call it p, and there
is an element of y, call it q, so that w = p’((p,a))}}

Problem 23” Show that p” is a function from {(x,y) : x is an element of U”
and y is an element of U”} into U”.

Definition 17” 77 = {((x,y),z) : x is an element of U” and y is an element of
U”; and if each of x and y is an element of U’, then

z = 7'((x,y)), or

if x is an element of U’ and y is not an element of U’, then

z = {w : there is an element of y, call it g, so that w = 7°((x,q))}, or

if x is not an element of U’ and y is an element of U’, then

z = {w : there is an element of x, call it q, so that w = 7°((q,y))}, or

if x is not an element of U’ and y is not an element of U’, then

z = {w : there is an element of x, call it p, and there is an element of y, call it
q, so that w = 7((p,q))}}-
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Problem 24” Show that 7 is a function from {(x,y) : x is an element of U”
and y is an element of U”} into U”.

Problem 28” Suppose that x and y are elements of U”.
Show that p”((xay)) = p”((YaX))'

Problem 29” Suppose that x and y are elements of U”.
Show that 77((x,y)) = 7" ((y,%))-

Problem 30” Suppose that each of x, y, and z is an element of U”.
Show that p”((p”((x,¥))2)) = p”((x,0”((¥,2))))-

Problem 31” Suppose that each of x, y, and z is an element of U”.
Show that 7" ((7”((x,5))2)) = 7" ((x,7"((,2))))-

Problem 32” Suppose that each of x, y, and z is an element of U”.
Show that 77 ((x,0”((v,2)))) = p”((7”((x,¥)), 77 ((x,2))))-

Problem 35” Suppose that x and y are elements of U”, (x,y) is an element of
G”, and z is an element of U”. Show that (p”((x,z)), p”((y,z))) is an element of
G”.

Problem 42” Suppose that x and y are elements of U” so that (x,y) is an
element of G”. Show that there is exactly one element of U”, call it g, so that

p"((x,q)) =y

Problem 43” Suppose that x is an element of U”. Show that there is exactly
one element of U”, call it y, so that 7”((x,y)) = (1,1).

7.4 Examples

Following are some theorems that students proved during my Spring 1999 of-
fering of the course for which a selection from the problems above formed the
corpus from which they worked. The problem from the notes which each ad-
dresses is noted in parentheses. The theorem stated may not solve that problem;
the reference is intended to show what students might be thinking when working
on the problem. The statements of the theorems typically include the structure
the student created to address the referenced problem.

Copyright 1/01 G. Edgar Parker 142



Texas-Style Theorem Sequences

Theorem(6) Suppose that (a,b) and (c,d) are elements of U and (a,b) precedes
(c,d). Then ((a * d)+(c * b),2 * b % d) is an element of U so that (a,b) precedes
((a #* d)+(c * b),2 * b * d), and ((a * d)+(c * b),2 x b * d) precedes (c,d). (This
is a nice example of using the arithmetic of the “midpoint” to find a candidate
for the solution. It is also nice in that the element produced need not be in U’
even when both (a,b) and (c,d) are, so there is still something to be discovered

if a student were to try to use the construction that worked here on Problem
6’.)

Theorem(6°’) Suppose that (a,b) and (c,d) are elements of U’ so that (a,b)
precedes (c,d) and so that a < b, d < ¢, (a,d) is an element of U’, and (c,b) is
an element of U’. Then (a * ¢, b * d) is an element of U’ so that (a,b) precedes
(a*c,bx*xd)and (a=*c,bxd) precedes (c,d). (Here is an example of a theorem
that only partially solves Problem 6’. It is not unusual for students to case such
problems before finding a solution such as the one above that handles all cases
at once.)

Definition: Suppose that each of n and m is a natural number. k is the
greatest common factor of n and m means that there is a natural number,
call it p, so that n = k * p and there is a natural number, call it q, so that m =
k * q; and (p,q) is an element of U’. (The student here made a definition for a
term with which he had pre-existing familiarity in terms of the structure of the
course!)

Notation: gcd{a,b} stands for “the greatest common factor of a and b.”

Theorem(25) Suppose that (a,b) is an element of U.

Then (m, m is an element of U’.

Theorem(30) Suppose that each of (a,b), (c,d), and (e,f) is an element of U’.
Then

EC (ax((csf)+(ae)) pr(anf)) = BC

(c*£)+(dxe)

dxf .
O* G ed{(en ) 1 (dne) v FT ¥ gea{(en )+ (@ve),an 7T )

Theorem(21) Define a by a(1) = (3,2) and if n is a natural number, then

I a(n) + 2 x Isa(n)
gcd{Il a(n) + 2 x lsa(n), I a(n) + Hsa(n)}’
IL;a(n) + lsa(n) )
gcd{Il a(n) + 2 x Hsa(n),ja(n) + Msa(n)} )

an+1) = (

Copyright 1/01 G. Edgar Parker 143



Texas-Style Theorem Sequences

Then a is a function from the natural numbers into U’.

Theorem(19) Suppose that

A = {(p,q) : (p,q) is an element of U’ and p * p < 2 * q * q} and

B = {x: x is an element of U’ and x is not an element of A}.

Then B = { (p,q) : (p,q) is an element of U’ and p * p > 2 * q * q}, and
if (a,b) is an element of U’, then

( (83*a)+ (4%b) (2%a)+ (3%b) )
ged{(8xa)+ (4xb),(2xa)+ (3xb)} gcd{(8*a)+ (4xb),(2*xa)+ (3xb)}

is an element of U’ so that if (a,b) is an element of A, then
it is an element of A and (a,b) precedes it, or

if (a,b) is an element of B, then

it is an element of B and it precedes (a,b).

7.5 Remarks

The following comments contain information about my intent for many of the
problems and experiences that my students have had with them.

Definition 1 Notice that the idea of domain is included in the definition of
function by proviso ii..

Definition 2, Problem 1, Definition 4 I have written the words for defini-
tions of the sets in question here. Students often translate these to the notation
for these words suggested back on the page on sets. If they don’t, I usually
suggest that they see if they can.

Problems 1 & 3 The students I teach in this course are typically very, very
naive and seldom have been forced to deal with the need to say things carefully.
I put Problems 1 & 3 in the notes to address the fact that early in every course,
a student would define a “function” as {(x,y) : x is an element of X and y is an
element of Y} and then claim whatever additional properties he or she needed
as he or she needed them. When it happens now, I can point to Theorem 1 and
start the discussion there. Problem 3 reinforces “not every set of ordered pairs
whose co-ordinates are in the right sets is a function.”

Problem 2 This problem is here to emphasize that, in this set theory, sets have
at least one element each. Discussion of the “empty set” will naturally occur
here.

Definition 6 Notice that p and g represent ordered pairs here. This forces
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the students to take meaning from the words and, when arguing from or to
Definition 6, gives an opportunity for them to rewrite their instantiations so
that the co-ordinates are explicitly denoted.

Problems 4, 5, & 6 These are all properties assumed about < on . Although
U will be modified when it fails to support precedes as an order, the proofs
made in U for 4, 5, & 6, properly adjusted, usually go over to all subsequent
modifications.

Problem 7 This is the first false conjecture since, for instance, (2,3) and (4,6)
cannot be compared by precedes. Historically, the resolution to this problem was
to identify all such objects as representing the same thing, an idea formalized
with equivalence classes. I prefer to emphasize that, in a model, different objects
must be different and to continue with a subset of the objects with which we are
working. (In “real life”, i.e., the world of computation, these are the only objects
which are accessible. Equivalence classes come up again and again anyway, so
the idea is still there to be studied later.)

Definition 7 Commands is the concept central to counting. The Schroder-
Bernstein Theorem, which is not addressed in this course, guarantees that it is
sufficient to admit the classical results.

Problems 9 & 10 Although all students in your class will “know” that tangent
maps (-7/2,m/2) onto R, they will not likely realize that this precludes Problem
10 from being a theorem. Indeed, most of the time classes try to prove Problem
10 and the argument typically includes as a punch line something equivalent
to “because the containing set contains more elements than the subset.” This
affords a marvelous opportunity to teach the difference between ordinary lan-
guage and formal language since “more” in the subset sense turns out to be
different than “more” in the counting sense (sometimes!). The questions that
show incorrect arguments are incorrect often lead to the example n+1 — n.

Problem 11 If Problem 7 has been done at this time, use Problem 11’ here
instead.

Problem 12 This problem virtually guarantees a case argument will be forth-
coming.

Problem 13 Since Problem 7 is not a theorem, if this problem is solved, then
it will be done using the order structure. Thus, together with Problem 12, we
get that segments defined by an order with neither max nor min create a basis
for a Hausdorff topology on the set on which the order is defined.
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Definitions 13, 14, and 15 In an axiom system for the numbers, one has (at
least) the choice of the greatest lower bound property, the Bolzano-Weierstrass
property, the Heine-Borel property, and the Dedekind cut property as a com-
pleteness axiom. I choose the Dedekind cut property since it can be articulated
without reference to any structure other than the order itself. This is the first
idea in the course that the students are likely not to have encountered in another
context.

Problem 14 An idea for proving Problem 14 has usually already been addressed
by this point in the course. Usually students will argue as if they have “(a,b)
or (b,a) and not both” instead of “(a,b) or (b,a)” in the definition of order, and
can be forced to address whether or not this is a consequence of the definition
at that time.

Problems 15 and 16 These problems are usually solved using cuts exhibiting
the Dedekind cut property, thus establishing a pretext for asking “must all cuts
be like these?”

Problem 17 The order, <, as we find it in counting, does not have the Dedekind
cut property.

Definitions 4’ and 6’ and Problems 4’- 8’ At some point, Problem 7 will
be solved. The example that shows Problem 7 is not a theorem will show two
elements, neither of which precedes the other. Often students demonstrate that
properties i. and iii. from Definition 3 hold before providing the example that
shows that property ii. fails. Sometimes a single example such as (1,1) and (2,2)
is offered; sometimes students describe the phenomenon that is in Definition
4’. The instructor needs to make the structure in Definition 4’ plausible from
whatever platform the students provide. This may necessitate stating more
problems, or initiating a class discussion in which other examples are created
and the structure identified in Definition 4’ is shown to be common to all of
them. I have placed these problems after Problem 17 only because it has been
typical in my experience that Problem 7 gets solved before Problems 15-17 get
solved. Whenever Problem 7 gets solved, it is time for Definitions 4’ and 6’ and
Problems 4’ - 8. Until Problem 7 gets solved, it is not time for Definitions 4’
and 6’ or Problems 4’ - 8’. If students have discovered the “reduction argument”
within equivalence classes, all five (six) problems will be direct consequences of it
using the arguments from 4-8 (and 11) to get the objects from which to reduce. If
students have not discovered the “reduction argument,” an interesting sidelight
is to see which constructions from 4-8 give elements of U’. These problems offer
an outstanding context to point out the power of “some arguments” and always
afford at least an opportunity to show how to modify an argument to meet new
conditions.
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Problems 18 & 19 Here is an example that shows that G’ fails to have the
Dedekind cut property.

Problems 20-22 Once Problem 10 gets solved and the possibility of seemingly
“smaller” sets commanding seemingly “larger” sets is established, these prob-
lems are ready to be addressed. If U’ has not been defined yet, state Problems
21 and 22 using U instead of U’ and save “ U’ commands U ” and the appro-
priate modifications of 21 and 22 for when U’ is defined. Also, the problem can
be stated with its correct conclusion to direct students or with the incorrect
conclusion to misdirect students; I choose this particular presentation in order
to illustrate that sometimes there is nothing in previous experience to indicate
what the appropriate conjecture is.

Definitions 16 & 17, Problems 23 & 24 These are the algorithms for
adding and multiplying fractions, but neither problem is a theorem. Both p
and 7, however, are functions from U’xU’ into U. In my experience, whenever
I state algebra problems, the majority of the class becomes enamored of them
and work on little else without severe prodding. I typically postpone stating
them as late as I can. These are nice in that the counterexamples can be used to
suggest that, even though the “answers” are different, they are “related” to the
same element of U’ and thus yet another opportunity is afforded for discovering
the pertinent equivalence classes.

Definition 18, Problems 25-27 This definition and these problems are ap-
propriate whenever the idea becomes clarified. Sometimes it happens when
Problem 7 is settled; usually it happens by the time the U and G theorems are
reproven for U’ and G’. If it hasn’t happened at this stage, they need to be
stated since they are important for the algebra problems.

Problems 23°, 24°’, and 28-34 These problems investigate the status of the
field axioms. Problems 23’ and 24’ are closure properties, 28 and 29 are com-
mutative properties, 30 and 31 are associative properties, 32 is the distributive
property, and 33 and 34 are identity properties. Of these 33 is the only one
which is not a theorem; indeed, if 35 were to be proven before 33, it shows that
33 cannot be true.

Problem 35 This is the property that addition preserves order.

Problem 36 & 37 Every equation for addition that can have a solution does
have one and the reciprocal property holds for multiplication. 36 is appropriate
once 33 is shown not to be a theorem and 35 is proven. 37 is appropriate once
34 is proven. If a class were to get this far, it would have established a model
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for the positive rational numbers and its algebra.

Definition 4” Be aware that Definition 4” introduces a new type of element to
the model. Each element of U’ is still there “... x is an element of U’, or ...”, but
there are also elements which are subsets of U’ “there is a cut of U’ by G’, call
it (A,B), so that A has no maximum by G’ and B has no minimum by G’, and x
= A.” Dedekind made each number one of these (all you need do is drop the “A
has no maximum and B has no minimum); I prefer the spirit of computation.
These numbers are there, but our computational access to them is through our
access to U’, a denumerable set dense in U” by G”. This is analogous to the
situation in the decimal model where even though infinite decimal expansions
exist, our computational access to them is typically through the arithmetic of
numbers with terminating decimal expansions.

Definition 6” G” on U” models < on the numbers.

Problems 4”, 5, 6”, 7, 21, & 38 These problems demonstrate that G” on
U” models < on the numbers. Note that in 6” the problem asks for an element
of U’, which, together with 21, gives a countable dense set. Geometrically, the
structure may as well be the numbers. The lack of an additive identity for the
algebra indicates that the model is more suitable for < on the positive numbers.

Problems 39-43 Since any order with the Dedekind cut property has the
“betweeness” property from which 40 is typically proven, these problems give
a template for a proof that any order with the Dedekind cut property must be
uncountable.

Problems 44-51 Prepare to extend the addition and multiplication to U”.

Problems 23” and 24” The structure for extending the algebra is done in
44-51, but the student still must prove that the complement of “C” has no min.

Problems 23, 24, 28”-32”, 35, 37” and 38” These establish that 7”
and p” have the structure that is assumed for * and + on the positive numbers.
If one desires to complete U”, G”, 7”7, and p” to a model for the numbers,
<, * , and +; all that is needed is to introduce an object to be 0, and, for
each element of U”, an object that can be identified with it (I typically reserve
the symbol % for the object to be identified with x). The order is extended
by letting 0 precede every element of U”, every element of U” precede 0, and
letting elements of U” reverse the order of the elements from U” from which
they are built. 7” is extended by using the results on U” and supplying a rule of
“signs”; 77 ((x,y)) is in U” means exactly one or x and y is in U” and the object
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for the answer comes from looking at 7” as applied to the objects in U” from
which x and/or y are built. Problems associated with these ideas are likely, for
a class that has gotten this far, to be routine. I tend to use problems associated
with these ideas as exam questions. Extending p” is more interesting, since it
involves using solutions to equations on U” (those addressed in 42”) for defining
sums.

7.6 Some Axioms for the Numbers
The primitive words are number, <, +, and * .
Axiom G1 < is an order on the set of numbers.

Axiom G2 It is not the case that the set of numbers has a min by < and it is
not the case that the set of numbers has a max by <.

Axiom G3 There is a sequence in the set of numbers, call it Q, so that if x
and y are numbers, then there is a natural number, call it k, so that x < Q(k)
and Q(k) < y.

Axiom G4 < has the Dedekind cut property.

Axiom A1 If each of x and y is a number, then x+y is exactly one number,
and x * y is exactly one number.

Axiom A2 If each of x and y is a number, then x+y = y+x, and
X*y =Y *X.

Axiom A3 If each of x, y, and z is a number, then x+(y+z) = (x+y)+z, and
xx(y*xz)=(x*y) *z.

Axiom A4 0 is a number so that if x is a number, then 0+x = x, and
1 is a number so that if x is a number, then 1 * x = x.

Axiom A5 If x is a number, then there is exactly one number, call it y, so
that x+y = 0; and if x is a number different than 0, then there is exactly one
number, call it w, so that x * w =1.

Axiom A6 If each of x, y, and z is a number, then
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x * (y+z) = (x * y)+(x * 2).

The Combining Axiom If x and y are numbers so that x < y, and w is a
number, then x+w < x+2z.
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8.1 Introduction

The introduction is under development.

8.2 Theorem Sequence

We begin with some formal rules of logic. A statement is a sentence, which in
a given context, is either true or false.

Logic Rule 1 No unstated assumption may be used in a proof.

Logic Rule 2 Let p and q be statements. If the compound statement “p and
not q” implies a contradiction, then the statement “If p, then q” is true.

We may use Logic Rule 2 to prove the statement in the following example.
Example 3 Let a be a positive integer. If 9 divides n, then 3 divides n.

Proof. Suppose that 9 divides n and 3 does not divide n. Since 3 does not
divide n, neither does 32. Since 3% = 9, it follows that 9 cannot divide n. This
is a contradiction, since 9 divides n. Therefore, if 9 divides n, then 3 divides n.

Logic Rule 4 Let p be a statement. The negation of the statement “Not p”
means the same as p.

Logic Rule 5 Lep p and q be statements. The negation of the statement “If p,
the q” means the same as “p and not q.

Logic Rule 6 Let p and q be statements. The negation of the statement “p
and q” means the same as “Not p or not q.” The negation of the statement “p
or q¢” means the same as “Not p and not q.”

Let p(z) be a sentence about z (in this case z is calles a variable). We say that
z is in the domain of p if the sentence p(z) is a statement. For example, let
p(z) be the sentence “z +3 = 7.” Then 6 is in the domain of p since p(6) is the
(false) statement “6 + 3 = 7.” On the under hand w is not in the domain of p,
since we cannot, in the current context, determine whether “w + 3 = 7” is true
or false.

Let p(z) be a sentence about z. The sentence “For all z, p(z)” is a statement.
The expression “for all” is called the universal quantifer. It is understood that
the phrase “for all z” refers only to z in the domain of p(z). The sentence “There
exists an  such that p(z)” is a statement. The expression “there exists” is called
the existensial quantifer. It is understood that the phrase “there exists an z”
refers to some z in the domain of p(z).
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Logic Rule 7 Let p(z) be a sentence about . The negation of the statement
“For all z, p(z)” means the same as “There ezists an = such that not p(z).”

Logic Rule 8 Let p(z) be a sentence about . The negation of the statement
“There erists an = such that p(z)” means the same as “For all z, not p(z).”

Logic Rule 9 Let p and q be statements. Suppose the statements “If p, then
q” and p are steps in a proof. Then q is a valid step.

Logic Rule 10 Let p, q, and r be statements. The following are all true state-
ments:

1. Ifp, then p orq.
If q, then p orq.

2. If p and q, then p.
If p and q, then q.

3. If “Not q” implies “Not p,” then p implies q.
If p implies q, then “Not q” implies “Not p”.

4. If p implies q and q implies r, then p implies r.
Logic Rule 11 For every statement p, either p or “Not p” is true.
We next state some properties of equality.
Equality Properties 12 FEquality satisfies the following:

Reflexive Property. a = a.
Symmetric Property. If a = b, then b = a.
Transitivity Property. Ifa =b and b = c, then a = c.

The following terms will remain undefined: point, line, to lie on, between, con-
gruent, plane, to pass through, and set.

Axiom 13 For every pair of points P and Q, there erists a unique line passing
through P and Q.

Axiom 14 For every line l, there exists at least two distinct point which lie on

l.

Axiom 15 There exist three distinct points with the property that no line passes
through all of them.

Copyright 1/01 James P. Ochoa 153



Texas-Style Theorem Sequences

Definition 16 Two distinct lines are said to be parallel if no point lies on both
lines.

We are now ready for our first few propositions. The proofs are provided.

Proposition 17 Ifl and m are distinct lines that are not parallel, then there
is exactly one point lying on l and m.

Proof. Suppose not. Let | and m be distinct lines that are not parallel such
that there are two distinct points, P and @, lying on both lines. By Axiom 13,
P and @) determine a unique line. Thus, [ and m must be the same line, a
contradiction. a

Proposition 18 For every line, there is a point not lying on it.

Proof. Let |l be a line. Let P, Q, and R be three distinct points with the
property that no line passes through all three points. Axiom 15 garranties these
point exist. At most, only two of these three points lie on I. It follows tht one
of the points is not on . |

Proposition 19 For every point, there is at least one line passing through it.

Proof. Let P be a point. Let @ be another point distinct from P (Axiom 15
guarantees the existance of }). Let | be the line passing through P and @
(Axiom 13). Using Proposition 18, let R be a point not on I. Let m be the line
passing through @ and R. Note that [ and m are not parallel. By Proposition 17,
@ must be the only point lying on both [ and m. Thus, P does not lie on m. O

The proof of the next proposition is the first assignment.

Proposition 20 There ezist three distinct lines with the property that no point
lies on all three lines.

Let [ and m be lines and let P be a point. If P lies on both lines, we say that [
and m intersect (or meet) at P.

Let A, B, and C be points. We write A * B x C to mean that B is between A
and C.

Betweenness Axiom 21 If Ax B x C, then A, B, and C are three distinct
points all lying on the same line and C * B x A.

>
Let P and @ be distinct points. We write PQ to denote the line through P and
<> <
Q. Note that AB and BA are the same line.
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Betweenness Axiom 22 Given any two points B and D, there exist points
>
A, C, and E lying on BD such that Ax Bx D, BxC D, and Bx D % E.

Betweenness Axiom 23 If A, B, and C are distinct points lying on the same
line, then ezactly one of the points is between the other two.

Let A and B be points. The line segment AB is defined to be the set of points

.
A, B, and all points between A and B. The ray AB is the set of all points C
such that A x B * C' together with all points on AB. Betweenness Axiom 22

guarantees that glven points A and B, both AB and AB exist. Every point on
AB is a point on AB and every point om AB is a point on AB That is, AB

is a subset of AB, and AB is a subset of AB. Finally, note that AB and BA
are the same set of points.

Lemma 24 Let Q and B be points. Suppose that C is a point lying on both
— —
AB and BA. Then, C lies on AB.

Lemma 25 Let A and B be points. Suppose that C is a point on AB Then,
C lies on AB or on BA

— —

Hint. Either C is on AB or it isn’t. If C is on AB, We’re done! Suppose C is
—

not on AB. What can you conclude?

Let U and V be sets of points. We say that U is a subset of V, and write U C V,
if every point in U is also a point in V. We say that U and V are equal, and
write U = V, if they are subsets of each other. The intersection of U and V,
written U [V, is the set of all points which are in both U and V. The union
of U and V, written U|JV is the set of all points which are in U or V. Note
that UNV CU andUCUYV.

Proposition 26 Let A and B be points. Then
— —
1. AB(\ BA= AB, and

— —
2. AB|) BA=AB.

— — —

Proof. To prove part 1, we must show that AB (| BAC AB and AB CAB
— — — —

(| BA. We already know that AB CAB and that AB CBA. Thus, AB CAB
— — — — —

() BA. Lemma ?? guarantees that AB (| BAC AB. Thus, AB (| BA= AB.
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— — — — —
To prove part 2, we must show that AB |J BACAB and ABCAB | BA. We
— — — —
already know that ABCAB abd BACAB. Thus, AB || BACAB. Lemma ??
— — — — — —
guarantees that ABCAB |J BA. Thus, AB=AB |J BA. m|

Definition 27 Let | be a line. Let A and B be two points that do not lie on
l. We say that A and B are on the same side of | if the line segment AB does
not intersect | (i.e. no point lies of both AB andl). If A and B are not on the
same side of |, the we say A and B are on opposite sides of l.

If A and B are not on [, then Logic Rule 11 guarantees that either A and B are
on the same side of [ or they are on opposite sides on .
The next lemma guarantees that our geometry is two-demensional.

Betweenness Axiom 28 (Seperation) For any line | and any three points
A, B, and C not lying on l:

1. If A and B are on the smae side of | and B and C are on the same side
of l, then A and C are on the same side of |

2. If A and B are on opposite sides of | and B abd C' are on oposite sides of
l, then A and C are on the same side of l.

Let [ be a line. Let P be a point not on I. The set of all points on the same
side of [ as P is called a half-plane determined by .

Lemma 29 Letl be a line and A a point not on l. Then, there exists a point
B such that A and B are on opposite sides of l.

Lemma 30 Ewrey line determines exactly two half-planes.

Lemma 31 Letl be a line. The two half-planes determined by | have no point
in common.

The following proposition follows immediatly from the two previous lemmas.
No proof is necessary.

Proposition 32 FEvery line determines ezactly to half-planes and these half
planes have no point in common.

Proposition 33 Letl be a line and let P be a point on l. Then there is a line,
distinct from l, passing through P.

Proposition 34 Let ! be a line. Suppose A and B are points on opposite sides
of l. Let C be the point where AB and l intersect. Then A * C x B.
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<
Proposition 35 Suppose Ax B xC. Letl be a line distinct from AC passing
through C. Then A and B are on the same side of l.

Proposition 36 Suppose that A* BxC and AxC xD. Letl be a line, distinct
>
from AC, passing through C. The B and D are on opposite sides of l.

Proposition 37 Suppose that Ax B C and AxC x D. Then B*xC x D and
AxBxD.

>
Proof. Let l be a line, distinct from AC, passing through C. By Proposition 36,
B and D are on opposite sides of [. By Proposition 34, B x C * D.

A similar argument shows that A x B D. |

Proposition 38 Let A, B, and C be points such that C x Ax B and let | be the
—
line passing through A, B. and C. If P is a point on l, then P lies on AB, or
=
P lies on AC.

P'roof Let P be a point on [. Either P lies on AB or it does not. If P lies

on AB then we are done! Suppose that P does not lie on AB Then, P # A,
P # B, P is not between A and B, and B is not between A and P. Therefore,
by Betweeness Axiom 23, P * A x B. Either P =C,or P A C. If P = C, we
are done! Suppose that P # C. By Betweeness Axiom 23, either A x P x C,
AxCxP,or C*AxP.

Suppose C * A x P (We will show that this leads to a contradiction). By Be-
tweeness Axiom 23, either C * P x B, P* C x B, or P * B x C. Suppose that
C*PxB. then Bx A*x P and B * PxC. Therefore, by Proposition 37, A* PxC.
However, this contradicts the fact that C'x Ax P. Suppose that PxC % B. Then
Bx*x AxC and B * C * P. Therefore, A x C * P. However, this also contradicts
the fact that C x A * P. Finally, suppose that P x B x C. Then P x Ax B and
PxBx(C. Therefore, A* B*C. Again, this contradicts that fact that C x A* B.
It follows that if we assume that C' * A x P, i])nat we get a contradiction. Thus

P+xCxAor Cx*Px A. Therefore, P is on AC. a

Definition 39 Let A, B, and C be distinct points not lying on the same line.
The set of points lying on AB, BC, or AC is called triangle ABC. We denote
this triangle by AABC. The points A, B, and C are called vertices of NABC.
the line segments AB, BC, and AC are called the sides of AABC. Note that
AABC, NACB, ABAC, ABCA, ACAB, and ACBA are the same set of
points.

Proposition 40 A triangle exits.

Copyright 1/01 James P. Ochoa 157



Texas-Style Theorem Sequences

Theorem 41 (Pasch’s Theorem) Let A, B, and C be points. Letl be a line
passing through AB at a point between A and B. Then | intersects AC' or BC.
Moreover, if C is not on l, then | intersects exactly one of AC or BC.

Hint. Either [ intersects BC or it does not. If | intersects BC, we are done!
Suppose | does not intersect BC. Say something about the points B and C.
Conclude something about the points A and C.

Proposition 42 Let A, B, and C be points such that Ax BxC. If P is a point
on AC, then P lies on AB or on BC. (i.e. AC = AB|JBC).

Proposition 43 Let A, B, and C be points such that Ax BxC. Then B is the
only point lying on both AB and BC. (i.e. AB(\BC = {B}).

Proposition 44 Let A, B, and C be points such that Ax BxC. Then B is the
— — — —
only point lying on both BA and BC. (i.e. BA|J BC= {B}).

Proposition 45 Let A, B, and C be points such that Ax BxC. If P is a point
— — —

on AB, then P is also on AC. Conversly, if P is on AC, then P is also on

— —  —

AB. (i.e. AB=AC).

Definition 46 Let A, B, and C be three distinct points not lying on the same

line. We define angle CAB, and write /CAB, to be the set of points lying on
— —
AB or on AC.

Definition 47 We say that the point is in the interior of the angle /CAB if

>
1. D and B are on the same side of AC, and

>
2. D and C are on the same side of AB.

Proposition 48 Let /CAB be an angle and let D be a point such that BxDxC.
Then, D is a point in the interior of /C AB.

>
Proposition 49 Let /CAB be an angle and let D be a point lying on BC. If
D is in the interior of /CAB, then B x D x C.

>
Propositons 48 and 49 tell us that a point D on the line BC is in the interior
of /CAB if and only if B* D x C.

Here is something to ponder.
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Conjecture 50 Let D be a point m the interior of the angle /CAB. Is there
a point E on AB and a point F' on AC such that Ex D x F?

Proposition 51 Let D be a point in the interior of /CAB. If E is a point on
—
AD, distinct from A, then E is in the interior of /CAB.

Propos1t10n 52 Let D be a point in the mterzor of /CAB. Let E be a point
on AD such that Ex Ax D. Then, no point on AE 1s in the interior of /C AB.

Proposition 53 Let D be a point in the interior of /CAB. Let E be a point
>
on AC such that E « Ax C. Then B is in the interior of /DAE.

Definition 54 Let A, B, and C be three distinct pomts not lying on the same

line. Let D be a point distinct from A. We say that AD 1s between AC’ and AB
if D is in the interior of /CAB.

— — —
Theorem 55 (Crossbar Theorem) Suppose AD is between AC' and AB Then,
5

AD intersects BC.

Hint. Use Proposiiton 53.

Definition 56 Let P be a point. We say that P is in the interior of each of the
three angles /CAB, /ABC, and /ACB. If P is not in the interior of NABC
and does not lie on ANABC, we say that P is in the exterior of NABC.

Definition 57 Let P be a point. We say that r is a ray emanating from P if
—
there is a point QQ such that r is the ray PQ.

Proposition 58 Let P be a point in the exterior of NABC. Let r be a ray
emamating from P that intersects AB at a point between A and B. Then r
intersects AC or BC.

Proposition 59 Let P be a point in the interior of AABC and let r be a ray
emanating from P. Then r intersects at least one of the sides of the triangle;
moreover, if r does not intersect a vertex, then r intersects exactly one side.

We write X =Y to mean X and Y are congruent.

Congruence Axiom 60 Let A, B, and A’ be any points such that A and B
are distinct. Let r be any ray emanating from A’. Then there erists a unique
point B’ on r, distinct from A’ such that AB = A'B’.
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Congruence Axiom 61 If AB= CD and AB = EF, then CD = EF. More-
over, every segment is congruent to itself.

Congruence Axiom 62 (Segment Addition) If Ax BxC, A' « B' « C',
AB = A'B’, and BC = B'C', then AC =2 A'C".

Congruence Axiom 63 Given /BAC and distinct points A’ and B’, there

>
exist points C' and D' on opposite sides of A'B’ such that /BAC = /B'A'C’
and /BAC = /B'A'D'.

Definition 64 We say that AABC and NA'B'C’' are congruent, and write
ANABS = NA'B'C' if /BAC = (B'A'C', /ABC = /A'B'C', /{ACB =
LA'C'B', AB= A'B', AC= A'B’, and BC = B'C".

Congruence Axiom 65 (Side-Angle-Side) Given AABC and AA'B'C’, if
AB= A'B', AC= A'C’, and /BAC =2 /B'A'C’, then NAABC = NA'B'C".

Congruence Axiom 66 Let o, 3, and v be angles. If o = 3 and B =+, then
a = v. Moreover, every angle is congruent to itself.

Proposition 67 Let AABC be a triangle such that AB =2 AC. Then /ABC =
/ACB.

Proposition 68 (Segment Subtraction) If AxB+C, DxExF, AB= DE,
and AC = DF, then BC = EF'.

.
Hint. Using Congruence Axiom 60, let G be the unique point on EF such that
BC = EG. Use Congruence Axiom 62 and Congruence Axiom 63 to show that
DG = DF. Now use Congruence Axiom 60 again.

Proposition 69 Suppose AC = DF. Let B be a point such that A x B x C.
Then there is a unique point E between D and E such that AB = DE.

Definition 70 Let A, B, C, and D be points. We write AB < CD if there is
a point E, C % E x D, such that AB = CE.

Proposition 71 Let A, B, C, and D be points. Either AB < CD, AB = CD,
or AB > CD.

Proposition 72 If AB < CS and CD = EF, then AB < EF.

Proposition 73 If AB < CD and CD < EF, then AB < EF.
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Definition 74 Let o and B be angles. We say that a and beta are supplemen-
tary angles if there are points A, B, C, and D, such that B * Ax C, D is not
>

on BC, a = /BAD, and 3= /CAD.

Definition 75 An angle is a right angle if it is congruent to one of its supple-
mentary angles. That is, if a and 3 are supplementry angles and a = 3, then
a s a Tight angle.

Definition 76 Let o and 3 be angles. We say that a and 3 are vertical angles
>

if there exist points A, B, C, D, and E such that Bx AxC, D+ AxE, BC and

>

DE are distinct lines, « = /BAE, and 8 = /CAD.
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9.1 Introduction

This section was developed by Wm. S. Mahavier who adapted the material from
the text, (forthcoming). It is a good example of how one can take a traditional
book and break the material up into bite sized pieces for students to absorb. The
sequence is probably best for students who have had at least an introduction to
topology and is certainly appropriate at the graduate level.

9.2 Theorem Sequence

All point sets in this section are subsets of 2. A rectangular grating is the
union of a square with sides parallell to the axes and a finite collection of line
segments each of which is either vertical or horizontal and has both end points
on the square. The 2-cells of a rectangular grating G are the closures of the
components of #2 — G (one of which is not really a 2-cell.) The 1-cells of G are
the sides of the bounded 2-cells of G. The 0-clells of G are the corners of the
boudned 2-cells of G.

Theorem 1 If H and K are disjoint closed subsets of 2 and H is bounded,
then there is a grating G such that no 2-cell of G intersects both H and K.

A k-chain on a grating G is a function from the set of k-cells of G into the set
{0,1}. Obviously this is equivalent to choosing a subcollection of the k-cells of
G. If each of C and D is a k-chain then C+D is the k-chain such that (C+D)(M)
= 0 if and only if C(M) = D(M) = 1 or C(M) = D(M) =0.

The k-chaing of a grating G with this operation are denoted C%(G). The k-chain
which is 1 only at the k-cell K will be denoted K.

Theorem 2 The k-chains on a grating G form a commutative group.

Theorem 3 There is a homomorphism &5 from Ca(G) into C1(G) such that
if K is a 2- cell of the grating G then §o (I~{ ) is 1 only at the 1-cells which are
subsets of K. Moreover, if C is a 2-chain and L is a 1-cell, then 85(C)(L) =1
if and only if there is an odd number of 2-cells K such that C(K) = 1 and K
contains L.

Theorem 4 There is a homomorphism §; from C1(G) into Co(G) such that
if K is a 1-cell of the grating G then 61(ZK) is 1 only at the 0-cells which are
subsets of K. Moreover, if C is a 1-chain and L is a 0-cell, then §;(C)(L) =1
if and only if there is an odd number of 1-cells K such that C(K) =1 and K
contains L.
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We will ignore the subscript and denote both d2 and §; by §. These homomor-
phisms are called boudnary operators and for the k-chain C, §C is called the
boundary of C.

The statement that a k-chain C is a cylce means that k =0 or k = 1 and 6C =0
or k=2 and §C = 0.

Theorem 5 The k-cycles form a subgroup of Cy(G).
Theorem 6 If k is positive and C is a k-chain then 6C is a (k-1) -cycle.
A cycle is said to be a bounding cycle if it is in the boundary of a chain.

Theorem 7 If C is a bounding 0-cycle, there are an even number of 0-cells K
such that C(K) = 1.

Theorem 8 If D is a 1-cycle and |D| is finite then ...> 22¢

If C is a k-chain, the carrier of C, denoted |C|, is the union of all k-cells K
such that C(K)=1. A k-chain C is said to be connected if |C| is connected. A
k-chain D is said to be a component of a k-chain C if D is connected and |D] is

a component of |C|. A k-chain C is said to in a pont set M is |C| is a subset of
M.

Theorem 9 If D is a component of a k-chain C and k is positive then |§D| is
|6C| N |D.

Theorem 10 If C is a 1-chain and |6C| is a set consisting of two points p and
g, then p and q are in the same component of |C|.

Theorem 11 If C is a 2-chain, |6C| is the point set boundary of |C|.

If each of G and H is a grating then H is said to be a refinement of G is H
contains G.

Theorem 12 IfG and H are gratings, H is a refinement of G and C is a k-china
on G, then there is only one k-chain D on H such that |C| = |D]|.

Definition 13 Suppose each of G and H is a grating an H is a refinement of G.
For each k-chain C on G, sdC denote the c-chian on H such that |sdC| = |C]|.
The chain sdC is called a subdivision of C.

Theorem 14 **Each 1-cycle is the boundary of exactly two 2-chains.
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Suppose M is a point set and C is a k-cycle on a grating G. Then C bounds in
M means that there is a refinment H of G, and a (k+1)-chain D on H such that
|D| is a subset of M and 6D = sdC.

Theorem 15 Suppose each of C1,Cs,...,Cs is a k-cycle on the grating G which
bounds in the points sets M. Then Ci1 + Cs + ...+ C,, bounds in M.

Theorem 16 If the k-cycle C does not bound in the points set M then some
component of C does not bound in M.

Theorem 17 If R?2 — M is connected then every 1-cycle in M bounds in M.

Lemma 18 Suppose U is an open set and p is a point of U. The set of all points
q of U such that there is a grating G and a Ichain on G in U whose boundary is
P+ G is both open and closed in U.

Theorem 19 Supose U is an open set, p and q are two points of U, p and q
are 0-cells of the grating G , and C is p+ . Then C bounds in U if and only if
p and q are in the same omponent of U.

Theorem 20 If C and D are 1-cycles and p and q are two points no in |C|U|D|,
then at least one of the cycles C, D, and C+D bounds in R2 — {p,q}.

Two 1-chains C and D on a grating G are said to have general intersection if
(1) no 0-cell common to |C| and |D| is the outer edge of G and

(2) at each 0-cell p common to |C| and |D| the horizontal 1-cells of G containing
p are contained in only one of |C| and |D| and the vertical 1-cells of G containing
p are contained in only one of |C| and |D]|.

Theorem 21 Suppose C is a 1-cycle and D is a 1-chain having general inter-
section with C and whose boundary is p + . Then C bounds in R? — {p,q} if
and only if |C| and |D| intesect at an even number of 0-celss.

Theorem 22 If two 1-cycles C and D have general intesection then |C| and
|D| intersect at an even number of 0-cells.

Theorem 23 Suppose C and D are 1-chains having general intersection, 6C =
D+ G, and 6D =7+ §, |C| N |D| contains an odd number of 0-cells and M is
a continuum which contains p and q but does not intersect |D|. Then M U |C|
separates r and s.

Lemma 24 Suppose U and V are open sets, U is bounded, G is a grating and
C is a chain on G such that |C| C UUV. Then there is a refinement H of G
such that every cell of H which is contained in |sdC)| is either a subset of U or
a subset of V.
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Theorem 25 Suppose U and V are upen sets in ®2, U is bounded, C and D
are 1-chains such that C is in U, D is in V, and 6C = 6D = p + g, and C+D
bounds in UUV. Then p + q bounds in UNV.

Theorem 26 Suppose M and N are closed subsets of 2 and M is bounded or
M and N are disjoint. If 6C = 6D = p+ g, |C| does not intersect M, and |D)|
does not intersect N but C+D bounds in ®% — (M N N), then p and q are not
separated by M U N.

Theorem 27 Suppose that M and N are closed subsets of R? and either M and
N are disjoint or M is bounded and M N N is connected. If p and q are not
separated by eiether M or N then P and q are not separated by M U N.

Theorem 28 If U and V are connected open sets whose union is R2 then the
intersection of U and V is connected.

Theorem 29 Suppose M is a closed set contained in a connected open set U in
R? and V3, Vs, ... are components of the point set R2 — M. Then the components
of UM are UNV1,UNVs,....

Theorem 30 Suppose U and V are open subsets of R2 which do not separate
%2, K and L are 1-chains such that |K| is a subset of U and |L| is a subset of
Vand 6K = §L. If K bounds in U NV then K+L bounds in U U V.

Theorem 31 Supopse M and N are connected closed subset of R% and C is a
0-cycle which bounds a 1-chain K such that |K| does not intersect M and bounds
a 1-chain L such that |L| does not intersect N. Suppose the 2n 0-cells of |C| are
listed in some way as (z1,y1), (T2,Y2), - s (Tn,Yn). If K+L does not bouind in
R2 — (M N N), the for some r, M U N separates x,from y,.

Theorem 32 No arc separates R2.

Theorem 33 If J is a simple closed curve in N2 then R2 — J is the union of
two open sets each of which has J as its point set boundary.

Theorem 34 If each of M and N is a closed connected subset of R2 and M
is bounded, but M N N is not connected, there is a pair of points separated by
M UN but not by M.

Theorem 35 The unit 2-cell in R? is unicoherent, that is, if M and N are
closed connected sets whose union is R2 then M N N is connected.
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10.1 Introduction to the instructor

These notes are intended for a course in which students may be proving theorems
on their own for the first time. The mathematical content addresses the question
“Can we give meanings for number, <, +, and * so that the axioms for the
numbers are consequences of the definitions?”

In these notes, a place-value model is pursued. The students are given that
the natural numbers exist and functions from the natural numbers into a two-
element set become the objects of study.

The problem set is designed so that even a class that plods will be exposed to
ideas of comparing sets and imposing an order on a set. A class that experiences
success from the beginning can be expected to get at least to the point of
recognizing that the model is Dedekind complete and experience the difficulties
of imposing an algebra driven by algorithms that are not universally defined. I
teach these notes as a one-semester course. I routinely have classes that prove
the order complete, and get some of the set comparisons, but I have never had
a class get entirely through the imposition of the algebra on the model. These
notes stop short of an entire model for the numbers. Students that can get
through most of these problems will have the maturity to do mathematics of
more importance (perhaps computer science majors could derive major benefit)
than what would follow. Nevertheless, for a teacher determined to pursue this
inquiry to its “completion,” I have given a brief description of what might come
next at the end of Section 10.5.

The story line for the course goes like this:

e Defining a place-value number consists of specifying the digit in each place
value.

e With the comparison principle “find the first place-value in which the
objects are different and use it for comparison” an order is defined, but it
contains pairs of elements so that there is no object between them.

e Having corrected this flaw, the set admits an order with no minimum and
no maximum and with the Dedekind cut property.

e Meanwhile, we are also counting sets. The natural numbers are shown to
be infinite.

e The natural numbers are shown to be as large as the set of elements whose
“partners” were purged to eliminate the “holes” and this set is shown to
be dense in the order.

e Segments are shown to be as large as the entire set.

e The natural numbers are shown to be not as large as this set or, for that
matter, any Dedekind-complete set.
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e Using the addition algorithm from grade school arithmetic, and being
careful, an algebra is imposed.

e With this algebra, the set admits an order-preserving local semigroup
which lacks an identity, but in which one can solve all of the “tractable”
equations.

Since progress through these notes depends on the students finding the conjec-
tures which are not theorems and then addressing the issues raised in trying to
produce structures about which the conclusions are true, the instructor must
exercise some care in when access to subsequent problems is granted to the
students. Also, students often uncover theorems while working on problems
and theorems can often be sifted out of students’ arguments; these make nice
addenda to the notes. I have included some examples from a past class of mine
in the Section 10.4. Section 10.5 contains remarks about particular problems
or definitions and possible timing schemes for presenting the problems. The
order in which I have listed the problems need not be the optimal sequence for
a particular class.

When 1 first taught a course of this type, I began by giving some background
in logic. I no longer do this. The approach I use now is to give out a sheet on
quantification when the course begins and deal with points of logic as they arise.
When students argue correctly, they give lectures as good as yours. Particular
points of logic may be emphasized by, after students finish arguments, going
back and focusing on a part of the argument that used logic in a particular way.
Correcting logically impaired arguments affords great opportunities for teaching
the logic; the mistakes that students make often reflect the misunderstandings
of other students in the class.

The instructor will also have available the opportunities that occur as students
deal with the set of natural numbers, which is assumed to exist along with
its arithmetic, and in terms of which the objects of the model are defined. In
this course, the students typically address structures of the natural numbers as
they work on the counting problems. The notions of odd and even, the fact
that N is well-ordered by <, the infinitude of the primes, and the “uniqueness”
of a prime factorization of a natural number routinely appear in the students’
work. I usually demand a definition for odd and even, since the experience of
formalizing “can be written as ...” affords an opportunity for the student to
consciously use quantification. Discussion of < naturally occurs the first time
finite induction is used (or is appropriate). I let the class have unique prime
factorization; a student clever enough to construct a counting argument based
on unique factorization deserves to be rewarded. Once the class has shown that
a proper subset may command its superset, I am willing to grant the infinitude
of the primes, and even to share an argument for it.

I give only one test in this course, the final examination. I offer one credit
each time a student presents an argument for a problem that the class judges
as being correct. If a student has a problem that someone else presents, that
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student is allowed to turn in her/his write-up at the end of the class period in
which the problem was finished. If the write-up is correct, the student gets one-
half of a credit. The final examination is given as a take-home, “use your notes
but nobody else’s,” test. It consists of a section of problems solved during the
semester and a section of problems that the students have not yet solved and
may not even have seen. Successful proofs for the problems proven during the
course allow students to earn a grade of “C” or to keep whatever grade their
work during the semester warranted. Successful work on the second section
allows a student to increase her/his grade or to atone for slip-ups on the first
section.

10.2 Introduction to students - An Introduction
to Doing Mathematics

In this course, not only will you be responsible for understanding why the math-
ematics we cover is correct, but the responsibility for discovery will also be
assigned to the class. One of the immediate results of this responsibility for
doing mathematics yourself rather than just learning how someone else did it
will likely be an acute awareness of the difference between the challenge associ-
ated with understanding why something is correct and discovering for yourself
whether or not a conjecture is a theorem.

Doing mathematics can be extremely exhilarating when one succeeds in the
discovery process; failing to do mathematics when one is putting in the time
trying to do mathematics can be extremely frustrating. This introduction is
designed to alert you to some tips that are designed to optimize the chances for
success.

First, you must put in the time necessary to give your creative intelligence a
chance to work. Flashes of insight typically occur after information is organized
and mulled over. Commitment to solving problems often leads to help from the
subconscious. Students often tell me that they got “the big idea” while walking
across campus or after turning in for the night.

Second, solutions to problems need not come all at once. You may need to
solve many small problems on the way to proving a theorem or disproving an
incorrect conjecture. Some of the most important work in mathematics is the
creation of technique. Take pride in progress toward a goal as well as reaching
the goal. Any information you uncover is more than you knew before, and
solving a problem is usually just a matter of putting together enough small
solutions to allow you to see why the big problem is correct.

Students often tell me that they would be glad to put in the time if they just
knew where to start. The following scheme is offered toward that end.
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The awareness stage

1. Identify all the words in the problem and make sure that you know the
definition of each of them. Try to recall examples that have dealt with these
notions before. If a definition is new, make some examples for the definition.

2. Identify any theorems that may have already dealt with ideas present in the
problem. Put techniques that gave rise to proofs in those contexts firmly in
mind.

The direct approach

3. Make an example that models the hypothesis to the problem and try to show
that the example exhibits the properties of the conclusion. (If you can prove
that your example fails to have the properties of the conclusion, you will have
shown that the problem is not a theorem!)

4. See if what allowed you to establish the conclusion in the example is a
property of all examples covered by the hypothesis. If it is, write a proof. If
not,

5. ...make an example which models the hypothesis but fails to have whatever
special properties you used to get the conclusion in the previous example. Go
to 3.

The indirect, or contrapositive approach

6. Suppose that the conclusion is false and try to show that the hypothesis must
be false as well. If the problem is not a theorem, any conclusions you get must
be qualities an example that disproves the conjecture must have.

7. Try to be aware of properties that, if they were added to the hypothesis, would
guarantee the conclusion. Alternatively, you might also try to find conclusions
that follow from the hypothesis, even if they do not include the one you seek.
Even if you are not able to solve the problem as stated, you may be able to
create a substitute theorem.

The main mindset is to be aware that even when arguments do not come quickly
or easily, the hunt itself may be an important learning experience. Working on
problems yourself is the central ingredient. Not only will it provide you with
theorems that are “your own,” but even when someone beats you to a solution,
it will put you in a much stronger position to analyze the argument given.

A theory of sets and ordered pairs

We will not create an axiomatic set theory. Following, however, is an idiomatic
presentation of some conventions that axiomatic set theory implies. We presup-
pose the existence of formal English as a language for expressing properties.
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The primitive words are set, element, ordered pair, first co-ordinate, and second
co-ordinate.

i. A set consists of an element or elements.

ii. An element of a set and the set consisting of that element are different
objects.

iii. A set is defined by stating the properties its elements have. (The plural
has been chosen here, but the definition of a set may be made by stating
a single property and a set may have a single element.)

iv. Given a definition for a set, any object having the properties specified is an
element of the set; and any element of the set has the properties specified
in the definition.

v. An ordered pair consists of a first co-ordinate and a second co-ordinate.

vi. The first co-ordinate of an ordered pair may be the same set-theoretic
object as the second co-ordinate, but as a part of the ordered pair, being
the first co-ordinate is distinguishable from being the second co-ordinate.

We reserve a notation for the creation of definitions of sets and for defining
ordered pairs.

Reserved symbols for definitions of sets are { : }. A symbol is created to follow
the open brace and precede the colon and then properties that an element must
have are stated in terms of that symbol after the colon and before the closed
brace. Thus

{z : z is a number and z > 5}

stands for “the set to which an element belongs provided that it is a number
and it is greater than 5.”

Reserved symbols for definitions of ordered pairs are ( , ). The first co-ordinate
of the ordered pair is written after the open parenthesis and before the comma;
the second co-ordinate of the ordered pair is written after the comma and before
the closed parenthesis. Thus (p,5) stands for the ordered pair whose first co-
ordinate is p and whose second co-ordinate is 5.

The purpose of this course is to build a model for the numbers. Our ultimate
goal is to prove that the statements which are typically taken as axioms for the
numbers are theorems in our model. In an axiomatic treatment, number, <, +,
and * are taken as primitive words; thus we provide definitions within the model
so that if they are interpreted as the primitive words, the statements made by
replacing the primitive words in the axioms with their analogues in the model
become the topics of consideration.

You may assume that the natural numbers exist and have whatever properties
number theory says they do. If there is doubt about a property of the natural
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numbers, we will either prove the property or indicate what property we are
assuming.

10.3 Problem Sequence

Definition 1 Suppose that each of X and Y is a set. The statement that fis a
function from X into Y means that f is a set so that

i. each element of f is an ordered pair whose first co-ordinate is an element
of X and whose second co-ordinate is an element of Y; and

ii. if p is an element of X, then there is an element of f whose first co-ordinate
is p; and

iii. if p and q are elements of f, then the first co-ordinate of p is not the first
co-ordinate of q.

Notation: If f is a function from X into Y and (p,q) is an element of f, then
we may write f(p) = q.

Definition 2 Suppose that each of X and Y is a set and that f is a function
from X into Y. The statement that M is the range of f means that M is the
set to which an element belongs provided that there is an element of f of which
it is the second co-ordinate.

Problem 1 Suppose that X is a set with more than one element!. Show that
the set to which an element belongs provided that it is an ordered pair whose
first co-ordinate is an element of X and whose second co-ordinate is an element
of X is not a function from X into X.

Definition 3 Suppose that X is a set and that L is a set each element of which
is an ordered pair whose first co-ordinate is an element of X and whose second
co-ordinate is an element of X. The statement that L is an order on X means
that

i. if p is an element of X, then (p,p) is not an element of L; and

ii. if p and q are elements of X, then (p,q) is an element of L or (q,p) is an
element of L; and

iii. if (p,q) and (q,r) are elements of L, then (p,r) is an element of L.

1That X has more than one element means that if p is an element of X, then there is an
element of X different from p.

Copyright 1/01 G. Edgar Parker 175



Texas-Style Theorem Sequences

Problem 2 Suppose that X is a set with exactly one element. Show that there
is no order on X.

Problem 3 Suppose that X is a set with more than one element and that L is
an order on X. Show that L is not a function from X into X.

Definition 4 U is the set to which an element belongs provided that it is a
function from the natural numbers into {0,1} so that its range is {0,1}.

Definition 5 Suppose that f and g are elements of U. The statement that f
precedes g means that if n is the smallest natural number in {k : f(k) # g(k)},
then f(n) = 0 and g(n) = 1.

Definition 6 G = {(p,q) : p is an element of U, and q is an element of U, and
p precedes q}.

Problem 4 Suppose that x is an element of U. Show that there is an element
of U, call such an element y, so that (x,y) is an element of G.

Problem 5 Suppose that x is an element of U. Show that there is an element
of U, call such an element y, so that (y,x) is an element of G.

Problem 6 Suppose that x and y are elements of U and (x,y) is an element of
G. Show that there is an element of U, call such an element w, so that (x,w)
and (w,y) are elements of G.

Problem 7 Show that G is an order on U.

Definition 7 Suppose that each of X and Y is a set. The statement that X
commands Y means that there is a function from X into Y whose range is Y.

Problem 8 Show that U commands the natural numbers.

Definition 8 Suppose that each of X and Y is a set. The statement that X is
a subset of Y means that if p is an element of X, then p is an element of Y.

Problem 9 Suppose that each of X and Y is a set and that X is a subset of Y.
Show that Y commands X.
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Problem 10 Suppose that X and Y are sets and that X is a subset of Y. Show
that it is not the case that X commands Y.

Definition 9 Suppose that each of X and Y is a set and that there is an element
of X which is an element of Y. The intersection of X with Y is {x: xis an
element of X and x is an element of Y}.

Notation: X N Y stands for “the intersection of X with Y.”

Definition 10 Suppose that X is a set, L is an order on X, and a and b are
elements of X so that (a,b) is an element of L, and there is an element of X, call
such an element c, so that (a,c) is an element of L and (c,b) is an element of L.
The segment from a to b by L is {x :(a,x) is an element of L and (x,b) is an
element of L}.

Notation: If (a,b) is an element of the order L, (a,b) stands for “the segment
from a to b by L.”

Problem 11 Suppose that x is an element of U. Show that there is a segment
by G so that x is an element of it.

Problem 12 Suppose that X is a set, L is an order on X, (p,q) and (r,s) are
segments by L, and x is an element of (p,q) N (r,s). Show that (p,q) N (r,s) is
a segment by L.

Problem 13 Suppose that x and y are elements of U and that G is an order
on U. Show that there are segments by G, call them P and Q, so that

i. x is an element of P,
ii. y is an element of Q, and

iii. if w is an element of P, then w is not an element of Q.

Definition 11 Suppose that each of X and Y is a set. The union of X with
Y is {p : p is an element of X or p is an element of Y}.

Notation: X U Y stands for “the union of X with Y.”

Definition 12 Suppose that X is a set, L is an order on X, and T and V are
subsets of X. The statement that (T,V) is a cut of X by L means that
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i TUV =X, and

ii. if x is an element of T and y is an element of V, then (x,y) is an element
of L.

Problem 14 Suppose that X is a set, L is an order on X, and (A,B) is a cut of
X by L. Show that if p is an element of A, then p is not an element of B.

Problem 15 Suppose that X is a set and L is an order on X. Show that there
is a cut of X by L.

Problem 16 Suppose that X is a set, L is an order on X, and (p,q) is an element
of L. Show that there is a cut of X by L, call it (A,B), so that p is an element
of A and q is an element of B.

Definitions 13 Suppose that X is a set, L is an order on X, p is an element
of X, and M is a subset of X. The statement that p is the max of M by L
means that p is an element of M, and if q is an element of M different than p,
then (q,p) is an element of L. The statement that p is the min of M by L
means that p is an element of M, and if q is an element of M different than p,
then (p,q) is an element of L.

Definition 14 Suppose that X is a set and L is an order on X. The statement
that L has the Dedekind cut property means that if (A,B) is a cut of X by
L, then

i. A has a max by L or B has a min by L and

ii. it is not the case that both A has a max by L and B has a min by L.

Problem 17 Suppose that L = {(x,y) : x is a natural number, y is a natural
number, and x < y}. Show that L does not have the Dedekind cut property.

Definition 4’ U’ = {x : x is an element of U; and if n is a natural number,
then there is a natural number greater than n, call it m, so that x(m) = 1}.

Definition 6° G’ = {(p,q) : p is an element of U’, q is an element of U’, and p
precedes q}.

Problem 4’ Suppose that x is an element of U’. Show that there is an element
of U, call such an element y, so that (x,y) is an element of G’.
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Problem 5’ Suppose that x is an element of U’. Show that there is an element
of U, call such an element y, so that (y,x) is an element of G’.

Problem 6’ Suppose that x and y are elements of U’ and (x,y) is an element of
G’. Show that there is an element of U’, call such an element w, so that (x,w)
and (w,y) are elements of G’.

Problem 7’ Show that G’ is an order on U’.
Problem 8’ Show that U’ commands the natural numbers.

Problem 11° Suppose that G’ is an order on U’ and that x is an element of
U’. Show that there is a segment by G’ so that x is an element of it.

Definition 15 D = {x : x is an element of U’ and there is a natural number,
call such a natural number n, so that if k is a natural number greater than n,
then x(k) = 1}

Problem 18 Suppose that x and y are elements of U’ and (x,y) is an element
of G’. Show that there is an element of D, call such an element w, so that (x,w)
and (w,y) are elements of G’.

Problem 19 Show that the natural numbers commands D.
Problem 20 Show that U’ commands U.
Problem 21 Show that G’ has the Dedekind cut property.

Problem 22 Suppose that C is a function from the natural numbers into U’
and that x = {(p,q) : p is a natural number, q is an element of {0,1}, and q is
not C(p)(p)}- Show that x is not an element of the range of C.

Problem 23 Show that the natural numbers do not command U’.

Problem 24 Suppose that x is an element of U’ and n is a natural number.
Show that {(p,q) : p is a natural number; and if p < n, then q = x(p), or if
p =n, thenq = 0, or if p > n, then g = 1} is an element of U’.
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Problem 25 Suppose that (x,y) is an element of G’. Show that (x,y) com-
mands U’. o

Definition 16 Suppose that X is a set, L is an order on X, and (p,q) is an
element of L. The interval from p to q by L is {x : x is an element of (p,q),
or x is p, or x is q}.

Notation: If (p,q) is an element of the order L, [p,q] stands for “the interval
from p to q by L.”

Problem 26 Suppose that M = {x : there is an element of G’, call it (p,q), so
that x = [p,q]}. Show that there is a function from the natural numbers into
M, call such a function f, so that if n is a natural number then, then f(n+1) is
a subset of f(n).

Problem 27 Suppose that (A, B) is an element of G’ and x is an element of
U’ so that x is an element of (A,B). Show that there is an element of G’, call it
(p,q) so that [p,q] is a subset of (A,B) and x is not an element of [p,q].

Problem 28 Suppose that M = {x : there is an element of G’, call it (p,q), so
that x = [p,q]}, s is a function from the natural numbers into M so that if k is a
natural number, then s(k+1) is a subset of s(k), and A = {x : there is a natural
number, call it k, so that if p is an element of s(k), then (x,p) is an element of
G’}. Show that (A,{x : x is an element of U’ and x is not an element of A}) is
a cut of U’ by G’.

Problem 29 Suppose that M = {x : there is an element of G’, call it (p,q), so
that x = [p,q]}, and s is a function from the natural numbers into M so that if
k is a natural number, then s(k+1) is a subset of s(k). Show that there is an

element of U, call it w, so that if k is a natural number, then w is an element
of s(k).

Problem 30 Suppose that X is a set and that L is an order on X so that L has
the Dedekind cut property. Show that the natural numbers do not command
X.

Definition 17 pc = {((0,0),0),(0,0)),((0,1),0),(0,1)),((1,0),0),(0,1)),((1,1),0),(1,0)),
((0,0),1),(0,1)),((0,1),1),(1,0)),((1,0),1),(1,0)),((1,1),1),(1,1)) }

Problem 31 Show that pc is a function from
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{(x,y) : xis an element of {(p,q) : p is an element of {0,1} and
q is an element of {0,1}} and y is an element of {0,1}} into
{(x,y) : xis an element of {0,1} and y is an element of {0,1}}.

Definitions 18 Suppose that (x,y) is an ordered pair. The projection of
(x,y) into its first co-ordinate is x, and the projection of (x,y) into its
second co-ordinate is y.

Notation: Suppose that p is an ordered pair. II;p stands for “the projection
of p into its first co-ordinate,” and Il;p stands for “the projection of p into its
second co-ordinate.”

Definition 19 Suppose that m is a natural number and each of x and y is a
function from {k : k is a natural number and k < m} into {0,1}.

p((x,y))(m) = Izpc((x(m),y(m)),0)), and

if t is a natural number so that t < m, and

p((x,y))(t+1) = Hzpe((x(t+1),y(t+1)),w)), then

p((x,y))(t) = Mape(((x(t),y(t)), Mipe(((x(t+1),y(t+1)),w)).

Problem 31 Suppose that m is a natural number and each of x and y is a
function from {k : k is a natural number and k < m} into {0,1}. Show that
p((x,y)) is a function from {k : k is a natural number and k < m} into {0,1}.

Definition 20 & = {((x,y),z) : each of x and y is an element of U’, and z is an
element of U’ so that if m is a natural number, then there is a natural number,
call it n, so that if n’ > n, then {(s,t) : s < mand t = 2(s)} C

p(({(s,t) : s <n’and t = x(s)},{(s,t) : s < n’and t = y(s)})), and if

p(({(st): s <n’and t =x(s)},{(s;t) : s < n’and t = y(s)})) (1) = pe(((x(1),y(1)),w)),
then II;pe((x(1),y(1)),w)) = 0}.

Problem 32 Show that & is a function from {(x,y) : x is an element of U’ and
y is an element of U’} into U’.

Problem 33 Suppose that ((x,y),z) is an element of &. Show that ((y,x),z) is
an element of &.

Problem 34 Suppose that & is a function from {(x,y) : x is an element of U’
and y is an element of U’} into U’ and that each of x, y, and z is an element of

U’. Show that &((x,&((y,2)))) = &((&((x,¥)),z))-

Problem 35 Show that there is an element of U’, call it z, so that if x is an
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element of U, then ((x,z),x) is an element of &.

Problem 36 Suppose that x and y are elements of U’ so that ((x,y),z) is an
element of &. Show that (x,z) is an element of G’.

Problem 37 Suppose that x and y are elements of U’ so that (x,y) is an element
of G’. Show that there is exactly one element of U’, call it w, so that ((x,w),y)
is an element of &.

Definition 21 E = {(x,y) : there is an element of U’, call it z, so that ((x,y),z)
is an element of &}

Problem 32’ Show that & is a function from E into U’.

Problem 34’ Suppose that (x,&((y,z)) is an element of E and (&((x,y)),z) is
an element of E. Show that &((x,&((y,2)))) = &((&((x,y)),z)).

Problem 38 Suppose that (x,y) is an element of E and (w,x) is an element of
G’. Show that (w,y) is an element of E.

10.4 Examples

Following are some theorems that students proved during a past offering of the
course for which a selection from the problems above formed the corpus from
which they worked. The problem from the notes which each addresses is noted
in parentheses.

Theorem (6°) Suppose that x and y are elements of U’, x precedes y, n is the
least natural number so that x(n) # y(n), and p is a natural number greater
than n so that y(p) = 1. Then {(s,t) : s is a natural number; and if s # p, then
t = y(s), or if s = n, then t = 0} is an element of U’ so that x precedes it and
it precedes y.

Theorem (21) Suppose that (P,Q) is a cut of U’ by G’. Then if P has a
maximum by G’, then Q does not have a minimum by G; or if Q has a minimum
by G’, then P does not have a maximum by G’

Theorem (21) Suppose that (P,Q) is a cut of U’ by G, n is a natural number,
and s is a function from {k : k is a natural number no greater than n} into
{0,1} so that
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i. s(n)=0:

ii. if a is an element of P; then
{(j;k) : j is a natural number no greater than n and k = a(j)} = s, or
there is an element of P, call such an element a’, so that
{(j,k) : j is a natural number no greater than n and k = a’(j)} = s and a
precedes a’: and

iii. if b is an element of Q; then b(n) = 1, or there is an element of Q, call
such an element c, so that ¢(n) = 1 and ¢ precedes b.

Then

{(4, k) : 7 is a natural number; and if j < n, then k = s(j), orif j > n,k =1}
is an element of U’ so that if a is an element of P different than it, then a
precedes it, and if b is an element of Q different than it, then it precedes b.

Theorem (25) (The class called this the “bead-chain” theorem.) Suppose that
x and y are elements of U’, x precedes y, a is the least natural number so that
x(a) is not y(a), b is a natural number so that b > a and y(b) = 1, and

ES = {p : there is an element of U’, call it w, so that

p = {(c,d) : c is a natural number, and

if ¢ < b, then d = y(c), or

ifc=0,thend = 0, or

if there is a natural number,

call it e, so that ¢ = b+e, then d = w(e)}}.

Then ES is a subset of (x,y), and ES commands U’.

Theorem (25) Suppose that each of X, Y, and Z is a set, X commands Y, and
Y commands Z. Then X commands Z.

10.5 Remarks

The following comments contain information about my intent for many of the
problems and experiences that my students have had with them.

Definition 1 Notice that the idea of domain is included in the definition of
function by proviso ii.

Definition 2, Problem 1, Definition 4 I have written the words for defini-
tions of the sets in question here. Students often translate these to the notation
for these words suggested back on the page on sets. If they don’t, I usually
suggest that they see if they can.
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Problems 1 & 3 The students I teach in this course are typically very, very
naive and seldom have been forced to deal with the need to say things carefully.
I put Problems 1 & 2 in the notes to address the fact that early in every course,
a student would define a “function” as {(x,y) : x is an element of X and y is an
element of Y} and then claim whatever additional properties he or she needed
as he or she needed them. When it happens now, I can point to Theorem 1 and
start the discussion there. Problem 3 reinforces “not every set of ordered pairs
whose co-ordinates are in the right sets is a function.”

Problem 2 This problem is here to emphasize that, in this set theory, sets have
at least one element each. Discussion of the “empty set” will naturally occur
here.

Problems 4, 5, 6, & 7 These are all properties assumed about < on R.
Although U will be modified when it fails to yield a density property for precedes,
the proofs made in U for 4, 5, & 7 usually go over to the subsequent modification.

Problem 6 This is the first false conjecture since, for instance,

{(x,y) : x is a natural number; and if x = 1, theny = 1, or if x > 1, then y = 0}
and,

{(x,y) : x is a natural number; and if x = 1, then y = 0, or if x > 1, then y = 1}
have nothing between them. Historically, the resolution to this problem was to
identify each such pair as representing a single element. I prefer to emphasize
that, in a model, different objects must be different and to continue with a
subset of the objects with which we are working.

Definition 7 Commands is the concept central to counting. The Schroder-
Bernstein Theorem, which is not addressed in this course, guarantees that it is
sufficient to admit the classical results.

Problems 9 & 10 Although all students in your class will know that squaring
maps [1,2] onto [1,4], they will not likely realize that this precludes Problem 10
from being a theorem. Indeed, most of the time classes try to prove Problem
10 and the argument includes as its punch line something equivalent to “be-
cause the containing set contains more elements than the subset.” This affords
a marvelous opportunity to clarify the difference between ordinary language and
formal language since “more” in the subset sense turns out to be different than
“more” in the counting sense (sometimes!). The questions that show incorrect
arguments are incorrect often lead to the example n+1 — n.

Problem 11 If Problem 7 has been done at this time, use Problem 11’ here
instead.
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Problem 12 This problem virtually guarantees a case argument will be forth-
coming.

Problem 13 Since Problem 6 is not a theorem, if this problem is solved, then
it will be done using the order structure. Thus, together with Problem 12, we
get that segments defined by an order with neither max nor min create a basis
for a Hausdorff topology on the set on which the order is defined.

Definitions 12, 13, and 14 In an axiom system for the numbers, one has (at
least) the choice of the greatest lower bound property, the Bolzano-Weierstrass
property, the Heine-Borel property, and the Dedekind cut property as a com-
pleteness axiom. I choose the Dedekind cut property since it can be articulated
without reference to any structure other than the order itself. This is the first
idea in the course that the students are likely not to have encountered in another
context.

Problems 15 and 16 These problems are usually solved using cuts exhibiting
the Dedekind cut property, thus establishing a pretext for asking “must all cuts
be like these?”

Problem 17 The order, <, as we find it in counting, does not have the Dedekind
cut property.

Definitions 4’ and 6’ and Problems 4’- 8’ At some point, Problem 6 will
be solved. The example that shows Problem 6 is not a theorem will display two
elements of U that have nothing between them. Often students have shown that
elements of a particular type do have the property before finding counterexam-
ples, and sometimes the student finding a counterexample will show that any
“such pair of elements” fails to have the property. Since the only pairs of ele-
ments which fail the property have the “all the rest 0’s” and the “all the rest
1’s” property, the instructor will have in hand at least an example that makes
the structure in Definition 4’ plausible. I have placed Problems 4’-8’ after Prob-
lem 17 only because it has been typical in my experience that Problem 6 gets
solved before Problems 15-17 get solved. Whenever Problem 6 gets solved, it
is time for Definitions 4’ and 6’ and Problems 4’ - 8. Until Problem 6 gets
solved, it is not time for Definitions 4’ and 6’ or Problems 4’ - 8. An interesting
sidelight is to see which constructions from the solutions to 4-8 give elements
of U’. These problems offer an outstanding context to point out the power of
“some arguments” and always afford at least an opportunity to show how to
modify an argument to meet new conditions.

Problems 18 & 19 U’ has a countable dense subset.
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Problem 4°’-7°, 18, 19, and 21 collectively demonstrate that U’ and G’ model
the geometry axioms for the numbers and < . A class that gets this far has a
decent foundation for studying the topology of ordered sets.

Problems 22 & 23 This is the scheme for Cantor’s proof that the (place-
value model for the) numbers are (is) not denumerable. Some technical care is
necessary to ensure that the construction of “x” from 22 is modified to ensure
that the object that is made is in U’ in order to make it work for 23.

Problem 24 This problem has usually been done in the context of solving 4’-8’
(sometimes even earlier), so it may not need to be stated. It is offered here since
its construction technique is viable in 25, thus making it a nice lemma for 25.

Problems 26-30 These problems establish that by mimicking something that
you can do in U’, any set which admits an order with the Dedekind cut property
must be non-denumerable. Their inclusion is dependent on whether you wish
to concentrate on the model itself (leave them out) or seize the opportunity to
illustrate the power of the type of thinking that the students have been doing
(include them).

Definitions 17-20 These definitions formalize the place-value addition algo-
rithm. 17 is the digit arithmetic and the carry, 18 creates a notation that will
distinguish digit from carry, and 19 manages truncation. 20 matches addition
of “terminating decimals” (the ones purged from the system after 6 turned out
not to be a theorem) to elements of U’. 19 involves finite induction, so if the
issue has not come up before now, here is a chance to teach it.

Problem 32 Although & is “single-valued”, it is not an operation on all of U’
since any pair of elements which pair 1 with 1 violate the “carry” property (if
p((x:y))(1) = pe(((x(1),y(1)),w)), then ITy pe((((x(1),y(1)),w)) = 0}). Students
may also find ways to exclude 0 or to exclude 1 from the range of a “prospective
answer”. This is the first evidence that U’ might not be the numbers, since
the geometry for the numbers is in place. If the former example is found, the
problem on which equations have solutions, 37, is motivated. If the other type
of example is found, the plausibility of this model only being the segment from
0 to 1 is established.

Problems 33-35 Wherever it is defined, & has the commutative and associative
properties, but does not have an identity. In showing no identity, the solver will
likely show that if the function that pairs every natural number with 0, even
though it isn’t in U’, works as an identity when the rule from the algorithm for
& is applied.
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Problem 36 If 36 is solved before 35, it precludes 35 from being a theorem.

Problems 32’ The function &, even though it is not defined on all of U’ x U’,
is at least single-valued wherever it makes sense.

Problem 38 If 32 is solved by showing the “carry in the first place” is violated,
38 provides an opportunity to show that not having range {0,1} (alternatively,
having range {1}) is a possible consequence of applying the algorithm.

‘What would come next? Using p, the algorithm for multiplication can be
defined, and the resulting multiplication is an order-reversing, commutative, and
associative quasigroup on U’ which distributes over & wherever & makes sense.
Search for an identity would show that the function that pairs every natural
number with 1 would do the job if it were an element of the set on which the
algebra acts.

Another tack to take is to extend U’ by making element of U” mean element
of U’, a natural number, or ordered pair whose first co-ordinate is a natural
number and whose second co-ordinate is an element of U’. The order is extended
lexicographically using < on the natural numbers in the first co-ordinate and
G’ in the second. The function & is extended by having elements of (N x N)
x (U’ x U’) paired with pairs whose first co-ordinates are the natural number
sums or the natural sums plus 1, depending on whether or not the element of
U’ x U'isin E.

10.6 Some Axioms for the Numbers
The primitive words are number, <, +, and * .
Axiom G1 < is an order on the set of numbers.

Axiom G2 It is not the case that the set of numbers has a min by < and it is
not the case that the set of numbers has a max by <.

Axiom G3 There is a sequence in the set of numbers, call it Q, so that if x
and y are numbers, then there is a natural number, call it k, so that x < Q(k)
and Q(k) < y.

Axiom G4 < has the Dedekind cut property.
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Axiom A1 If each of x and y is a number, then x+y is exactly one number,
and x * y is exactly one number.

Axiom A2 If each of x and y is a number, then x+y = y+x, and
X*¥y =Y *X.

Axiom A3 If each of x, y, and z is a number, then x+(y+z) = (x+y)+z, and
xx(y*xz)=(x*y) *z

Axiom A4 0 is a number so that if x is a number, then 0+x = x, and
1 is a number so that if x is a number, then 1 * x = x.

Axiom A5 If x is a number, then there is exactly one number, call it y, so
that x+y = 0; and if x is a number different than 0, then there is exactly one
number, call it w, so that x * w =1.

Axiom A6 If each of x, y, and z is a number, then
x * (y+z) = (x * y)+(x * 2).

The Combining Axiom If x and y are numbers so that x < y, and w is a
number, then x+w < x+2z.
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11.1 Introduction

The introduction is under development.

11.2 Preliminaries

Basic notation and terminology of sets and functions are assumed.

Theorem 1 (DeMorgan’s Laws) Let A and B be subsets of the set X. Then
1. X\ (AUB)=(X\A)NX\B) and
2. X\ (ANB) = (X\ 4 UX \ B).

Definition 2 Let I be an indering set. For each § € I let As be a set. We
define the following two sets:

1. U As = {z| there exists § € I such that x € As} and
éel
2. ﬂAgZ{.’L'| forall 6 €1, z € As}

éel

Theorem 3 (Generalized DeMorgan’s Laws) Let {As| § € I} be a collec-
tion subsets of the set X. Then

1. X\ (|J4s) =X\ 45) and

del del
2. X\ ([ 4s) = [J(X\ 45)
del del

Theorem 4 Let A and B be subsets of the set X. Then
A\B=A()(X\B).

Theorem 5 Let f: X — Y be a function and let A and B be subsets of Y.
Then

1. f~Y(AUB) = f~1(AUF(B),
2. f{ANB)=f 1A NFHB),
3. fTY(Y\B)=X\ f1(B), and
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4 fHA\B)=f1(A)\f(B).

Theorem 6 Let f: X — Y be a function. Let A be a subset of X and let B
be a subset of Y. Then

1. Ac f7H(f(4),
2. f(f Y(B)) C B, and

3. f(X)\ f(4) C f(X\ 4).

11.3 Theorem Sequence

Definition 7 A topological space (X,T) is a set X and a family of sets T sat-
isfying the following three conditions:

1. the empty set, O, and X are members of T,
2. if A and B are in 7, then A(\B is in 7, and

3. if I is an indexing set and As is in T for each & in I, then s, As is
mT.

The members of T are called open sets and T is called the topology on X.

Definition 8 Let (X,T) be a topological space. A subset A of X is called a
closed set if X \ A is open.

Theorem 9 The union of finitely many closed sets is closed. The intersection
of an arbitrary family of closed sets is closed.

Theorem 10 For any topological space, (X, T), the sets § and X are closed.

Theorem 11 Let A be a subset of X. Then A is open if, and only if, for each
z in A, there is an open set O, such that z is a member of O, and O, is a
subset of A.

Definition 12 Let (X, T) be a topological space and let A be a subset of X. The
interior of A, notated int(A), is the union of all open subsets of A. The exterior
of A, notated ext(A), is the union of all open sets not intersecting A.

Theorem 13 The interior and exterior operators satisfy the following:

1. int(0) = 0 and ext(0) = X,
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int(X) = X and ext(X) =0,
int(int(A)) = int(4),
int(A () B) = int(A4) int(B),

ext(A|JB) = ext(A) | ext(B),

int(A) C A and ext(A) C X \ A4, and

NS Gt e

if A C B, then int(A) C int(B) and ext(B) C ext(A).

Definition 14 Let x be a member of X and let A be a subset of X. Then x is
said to be a boundary point of A if every open set containing = intersects both A
and X \ A. The set of all boundry points of A, notated 8 A, is called the boundry
of A.

Theorem 15 For every subset A of X, the sets int(A), ext(A), and 0A are
mutually disjoint and thier union is X. Moreover, int(A) and ext(A) are open
sets and 0A is a closed set.

Theorem 16 A set A is closed if, and only if, DA C A. A set A is open if,
and only if, 0A C X \ A.

Definition 17 The closure of a set A, notated A, is the intersection of all
closed sets containing A.

Theorem 18 A set A is closed if, and only if, A = a.
Theorem 19 If A is a set, then A = intA|JOA.

Theorem 20 The closure operator satisfies the following:

Theorem 21 A point x is in A if, and only if, every open set containing x
intersects A.

Copyright 1/01 Stuart Anderson 192



Texas-Style Theorem Sequences

Definition 22 A point = is a limit point (also called cluster point or accumu-
lation point) of a set A if every open set containing = contains a point of A
different from z. The derived set of a set A, notated A’, is the set of all limit
points of A.

Theorem 23 A set A is closed if, and only if, A’ C A.
Theorem 24 For any set A, A= AJA'.

Definition 25 Let 7 and o be topologies on X. We say that T is finer (or
larger) than o if o C 7. We say that T is courser (or smaller) than o if T C 0.
If 1 C o or o C 1, then the topologies are said to be comparable. Otherwise,
they are not comparable.

Definition 26 A family B of subsets of a set X is a base for a topology on X
if the following two conditions are satisfied:

1. for each z in X, there is a B € B such that x € B and
2. if A and B are in B and x € A\ B, then there is a C in B such that
zeC and C C A(B.

Theorem 27 Let B be a base for a topology on a set X. Let
7 ={U| U is the union of members of B}.

Then T is a topology on X.

Definition 28 The topology T defined in Theorem 27 is called the topology gen-
erated by B.

Theorem 29 The topology generated by the base A is finer than the topology
generated by the base B if, and only if, for any B € B and any x € B, there
exists an A € A such that z € A and A C B.

Theorem 30 A family B of subsets of X is a base for a given topology 7 on X
if, and only if, the following two conditions are true:

1. for each U in T and ¢ € U, there is a B € B such that x € B and B C U,
and
2. BCr.

Problem 31 (double check this one!) Let X be a set. Prove or disprove
the following statements.
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1. If I is a set and {75| 6 € I} is a collection of topologies on X, then ﬂ T

sel
is a topology on X.

2. If 7 and o are topologies on X, then T|Jo is a topology on X.
3. If {r5| 6 € I} is a collection of topologies on X, then there exist unique
topologies T and o on X such that 1 C 175 C o for all 6 € I.

Definition 32 A metric space (X,d) is a set X together with a function d :
X x X — R which satisfies the following conditions:

1. d(z,y) > 0 for all z,y € X,

d(z,y) = 0 if, and only if, z =y,

d

T,

(z,9)
(z,9)
d(z,y) = d(y,z) for all z,y € X, and
(z,y) < d(z,2) +d(z,y) for all z,y,z € X.

The function d is called a metric on X.

Definition 33 Let (X,d) be a metric space. For x € X and r > 0, the set
B(z,7) ={y| y € X and d(z,y) < r} is called the r-neighborhood (r-ball) about
z.

Theorem 34 Let (X,d) be a metric space. The collection of all sets B(z,r)
such that © € X and r > 0 is a base for a topology on X.

Definition 35 The topology generated by r-neighborhoods in Theorem 384 is
called the metric topology on X generated by d.

Definition 36 A topological space (X, T) is called metrizable if there is a metric
d on X such that the metric topology on X generated generated by d is T.

Theorem 37 Let (X, 7) be a topological space andY C X. Letty ={Y NU| U €
T}. Then Ty is a topology on Y.

Definition 38 The topological space (Y, Ty) in Theorem 37 is called the relative
(or induced) topology on Y. Sets in Ty are called open in' Y or open relative to
Y. Similar terminology is used for closed sets.

Theorem 39 Let (Y, 7y) be a subspace of (X,7) and ACY. Then

1. A is Ty -closed if, and only if, A=Y (| F, where F is a T-closed subset of
X,
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2. a member x of Y is a Ty -limit point of A if, and only if, x is a T-limit
point of A,

3. the Ty -closure of A is the intersection of Y and the T-closure of A, and
4. the intersection of Y and the T-interior of A is a subset of the Ty -interior
of A.
Theorem 40 Let (Y, 7y) be a subspace of (X,7) and ACY. Then

1. if Ais closed inY andY is closed in X, then A is closed in X, and

2. if Ais open inY andY is open in X, then A is open in X.

Definition 41 A topological space (X, T) is connected if X is not the union of
two nonempty disjoint open sets. A subset Y of X is connected of (Y, Ty) is
connected.

Theorem 42 The space X is connected if, and only if, the only subsets of X
which are both open and closed are 0 and X.

Theorem 43 Let {As| § € I} be a collection subsets of the set X. If Ao () Ag #

0, then U Ags is connected.
éel

Theorem 44 Let A be a subset of X. If A is connected and A C B C A, then
B is connected.

Definition 45 Let A and B be subsets of X. We way that A and B are sepa-
rated if A(\B= AN B =0.

Theorem 46 If A and B are both closed or both open, then the sets A\ B and
B\ A are separated sets.

Theorem 47 A space X is connected if, and only if, X is not the union of two
nonempty separated sets.

Definition 48 A nonempty subset C of X is said to be a component of X if

1. C 1is connected, and

2. if A is any connected subset of X and A(\C # 0, then A C C.

If ¢ is a member of X and C is the component of X such that © € C, then we
write C = C(z).
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Theorem 49 Let z be a member of X. Then the component C(z) is the union
of all connected subsets of X containing x.

Theorem 50 Let (X, T) be a topological space. Then

1. each component of X is closed, and

2. if A and B are distinct components of X, then A and B are seperated.

We will accept the following theorem without proof.

Theorem 51 The componets of X form a partition of X into mazimal con-
nected subsets.

Definition 52 A space X is locally connected if it has a basis consisting of
connected sets.

Theorem 53 If X is locally connected, then the components of open sets are
open.

Theorem 54 A space X is locally connected if, and only if, for each z in X
and each neighborhood U of x, there exists an open connected set V such that
ze€VandV CU.

Definition 55 Let (X,7) and (Y,0) be topological spaces, f: X — Y be a
function, and z be a member of X. We say that f is continuous at x if the
inverse image of every open set containing f(x) is an open set containing z.

That is, f is continuous at x if for each open set V containing f(z), there is an
open set U such that z € U and f(U) C V.

We say that the function f is continuous if f is continuous at every point in X.

Theorem 56 Let f: (X,7) — (Y,0). The following siz conditions are equiv-
alent:

1. f is continuous,

2. the inverse image of each open subset of Y is open in X,

8. the inverse image of each closed subset of Y is closed in X,

4. the inverse image of each member of a base for o is open in X,

5. for every subset A of X, f(A4) C f(A), and

6. for every subset B of Y, f~1(B) C f~1(B).
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Definition 57 A function F : (X,7) — (Yo) is a homeomorphism if f is
one-to-one (notated 1-1), onto, and both f and f~' are continuous. In this
case, (X,7) and (Y,0) are said to be topologically equivalent. Any property
which when possessed by a space is possessed by all homeomorphic images of
that space is called a topological property or a topological invariant.

Theorem 58 If X and Y are topological spaces and f is a 1-1 function from
X onto Y, then the following are equivalent:

1. f is a homeomorphism,

2. if G is a subset of X, then f(G) is open inY if, and only if, G is open in
X,

3. if F is a subset of X, then f(F) is closed in'Y if, and only if, F is closed
i X, and

4. if E is a subset of X, then f(E) = f(E).

Theorem 59 Let X, Y, and Z be topological spaces, f: X — Y, and g :
Y — G. If f and g are continuous, then go f: X — Z is continuous.

Theorem 60 If A is a subset of X and f: X — Y is continuous, then
fla: A —Y is continuous.

Theorem 61 If X = A|J B where A and B are both open (or both closed) in
X and f: X — Y is a function such that both f|s and f|p are continuous,
then f is continuous.

Theorem 62 The continuous image of an connected set is connected. That is,
if X is connected and f: X — Y is continuous, then f(X) is connected.

Definition 63 1. A space (X, T) is called a Ty-space if for each pair of dis-
tinct members of X, there is an open set U containing one of the members
but not the other.

2. A space (X,7) is called a Ti-space if for each pair of distinct members x
and y of X, there is an open set U containing x but not y.

3. A space (X,7) is called a Hausdorff (T») space if for each open pair of
members x and y in X, there ezist disjoint open sets U and V such that
zeUandyeV.

4. A space (X, 1) is called regular if for each closed subset K of X and z in
X, there ezxist disjoint open sets U and V' such that K CV andx € V.

5. A space is called a T3-space if it is both regular and T;

Copyright 1/01 Stuart Anderson 197



Texas-Style Theorem Sequences

6. A space (X, 1) is called normal if for each pair, E and F, of disjoint closed
subsets of X, there exist disjoint open sets, U and V', such that E C U
and F CV.

7. A space is called a Ty-space if it is both normal and T;.

Theorem 64 A space (X,T) is a Ti-space if, and only if, singleton sets are
closed.

Theorem 65 If (X, 1) is a Hausdorff space, then

1. each finite set is closed, and

2. x is a limit point of a subset A of X if, and only if, each open set containing
x contains infinitely many members of A.

Definition 66 A function f: (X,7) — (Y, 0) is said to be open (resp. closed)
if the image of each open (resp. closed) set in X is open (resp. closed) inY .

Theorem 67 If (X, 1) is Hausdorff and f: (X,7) — (Y, 0) is a closed, one-
to-one, and onto, then (Y, o) is Hausdorff.

Theorem 68 A space (X,T) is regular if, and only if, for each = in X and
each open set U containing x, there exists an open set V such that © € V and
VCU.

Theorem 69 A space (X, ) is normal if, and only if, for each closed set K and
open set U containing K, there exists an open set V suchthat K CV CV CU.

Theorem 70 Every metric space is normal.

Theorem 71 (Urysohn’s Lemma) A space X is normal if, and only if, for
each pair of disjoint closed sets, A and B, in X, there erists a continuous
function f: X — [0,1] such that f(a) =0 for alla € A and f(b) =1 for all
be B.

Theorem 72 (Tietze’s Extension Theorem) A space X is normal if, and
only if, whenever A is a closed subset of X and there is a continuous function
f: A — R, there exists a continuous extension of f to all of X; that is, there
is a continuous function F: X — R such that F|4 = f. Moreover, if f is
bounded, then F' may chosen to be bounded also.

Definition 73 A collection of sets ® = {As : § € A} is called a covering
(cover) of X if X C U As.
dcA

Any subcollection of ® which is also a cover of X is called a subcover.
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Definition 74 A cover ® of the space X is called an open cover of X if each
member of ® is an open subset of X.

Definition 75 (We need to think about this one!) A space (X, 1) is com-
pact if every open cover of X has a finite subcover. A subset Y of X is said to
be compact if (Y, Ty) is compact.

Definition 76 A family of sets ® = {As|6 € A} has the finite intersection
property if the intersection of each finite subfamily of ® is nonempty; that is, if
U is a finite subset of ®, then ﬂ Ajs is a nonempty set.

sev

Theorem 77 A space X is compact if, and only if, each family of closed subsets
of X which has the finite intersection property has a nonempty intersection; that

is, if ® is a collection of closed subsets of X, then ﬂ As is a nonempty set.
6cd

Theorem 78 The continuous image of a compact set is compact.
Theorem 79 A compact subset of a Hausdorff space is closed.

Theorem 80 Disjoint compact subsets of a Hausdorff space have disjoint neigh-
borhoods. That is, if A and B are disjoint compact subsets of a Hausdorff space,
then there ezist disjoint open sets U and V such that ACU and BCV.

Definition 81 If X is compact, Y is Hausdorff, and f: X — Y is continuous,
then f is a closed map.

Theorem 82 A one-to-one continuous function from a compact space onto a
Hausdorff space is a homeomorphism.

Definition 83 A family, o, of subsets of a set X is a subbase for a topology on
X if for each x in X, there is an S in ¢ such that z € S.

Theorem 84 Let ¢ be a base for a topology on X. Let B be the set of all finite
intersections of members of ¢. Then B is a base for a topology on X.

Definition 85 Let Y be a set and let {(X4,74)|a € A} be a collection of
topological spaces. For each a in A, let f, be a function from Y into X,. The
smallest topology, w, on'Y such that for alla in A, fo,: Y — X, is continuous
is called the weak topology on Y .

Theorem 86 LetY be a set and let {(Xq,7o)| @ € A} be a collection of topo-
logical spaces. For each o in A, let f,, be a function fromY into X,. The family
o={f"Y(U)|U € T, and o € A} is a subbase for the weak topology, w, onY .
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Definition 87 1. The Cartesian product of the collection of sets {X,|a €
A} is the set

HX ={z: A— U |z(a) € X4 for each o € A}.

acA acA
2. The set X, is called the a-th coordinate space and z(c) is called the a-th

coordinate of x

3. Let B € A. The function Pg: [],c4
called the (-th projection function.

— Xg defined by Pg(x) = z(B) is

4- The product topology on [], 4 Xo is the weak topology determined by the
functions P,.

Theorem 88 FEach projection function is an open function.

Theorem 89 A product space is connected if, and only if, each coordinate space
is connected.

Theorem 90 (Alexander’s Subbase Theorem) Let X be a topological space
and let ¢ be a subbase for the topology on X. If every open cover of X by mem-
bers of ¢ has a finite subconver, then X is compact.

Theorem 91 (Tychonoff’s Theorem) A product space is compact if, and
only if, each coordinate space is compact.
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12.1 To the Instructor

The course sequence that follows started as a draft of my father’s notes from a
topology course that he taught at Emory University in Atlanta, Georgia for
some 30 years. As they came to me, the notes were somewhat rough and
adhered to a more traditional style and notation reminiscent of the style of
R. L. Moore whose course the notes were based on. In adapting the sequence
to my course, I modified, polished, and added to the notes, modernizing the
terminology somewhat, but trying to retain the mathematical rigor and precision
that was the heart. My students and I have enjoyed the discovery-based format
and over time I have learned to cover much more material than I did when
I started using this method. The three hour undergraduate topology course
follows our Foundations in Mathematics course and serves as a thread of pure
mathematics in an otherwise applied curriculum. The next section includes the
course syllabus that I pass out to students at the beginning of the semester.
This provides insight into the class structure and explains the grading in detail.

I generally pass out the notes to the students a few pages at a time and have
them work on the problems. It is understood that the students are to look only
to themselves and to me for guidance; no books or outside help of any other
kind is to be sought out. Because I sometimes have classes where some of the
students have had a semester of real analysis in a similar format, I will often
use cooperative learning and pair up the experienced students with one or two
inexperienced students. This brings a whole new aspect to the course as they
now are working and competing in groups. It also supports the comraderie that
we experience as mathematicians when we share our problems.

The course is intended to be a self-contained, one-semester course, although the
amount of material covered will vary considerably depending on the experience
level of the instructor, the level of the class, and the amount of guidance offered
by the instructor on each problem. For a one semester course, I recommend
omitting the measure theoretic material and the material dealing with sequence
convergence and Cauchy sequences. Omitting these materials will not require
altering the sequence in any way. All the theorems can be proved indepen-
dently of these materials. I often teach the course in this way to concentrate
completely on the topological aspects. This allows me to end the course with
the development and properties of the Cantor set, the students first introduc-
tion to fractals, and to include additional topological spaces in R, some function
spaces, and some metric spaces. For a two semester course one can include all
the material and then at the end of this sequence, pick up the real analysis se-
quence, Section ?7?, that includes all the information on continuous functions,
differentiability, integrability, etc.

Generally, I offer minimal guidance until the students have nothing to present
— then I chat informally about the upcoming definitions, axioms, and theorems
so that they have a better intuition. Guidance of this type can easily double the
speed of a class and I definitely use this technique to assure that we cover what I
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consider “sufficient material.” These are not lectures, rather they are discussions
where students’ questions are turned back to the class for disucssion. The most
important aspect of my sucessful classes has been constant open discussion
between the students soo that they feel comfortable presenting material at the
board, asking questions of myself or students who are presenting, and defending
their arguments at the board.

I confess that at the beginning of the semester, I always fear that we are making
minimal progress, since students may spend an entire class struggling to put up
a simple correct proof, however, by the end of the course, they are putting up
two and three correct proofs per class period. The learning curve is exponential
and patience is required at the beginning of such a class.

I have received positive feed back from many students who took these courses,
but my favorite came from a student who was taking a traditional lecture course
in differential equations where the professor proved theorems at the board daily
(as he should). The comment was the following: “Finally, I understand what
Dr. (blank) puts on the board every day.”

12.2 Course Syllabi

Rules for the course: All work presented or turned in is to be yours or that
of your “group.” You are not to discuss any problems with any one other than
your group (or me), and you are not to look into any books for further guidance.
Grading for the course will be the average of three grades: board work grade
(group grade), turn in grade (group grade), average of midterm and final exam
grades. Anyone who is regularly presenting material at the board will certainly
have adequate work for good grades on the written assignments and thus will do
well on the midterm and final. I emphasize that the goal of the course for each
student should be clear presentations of well prepared problems at the board.

Board work: If a problem is about to be presented at the board and you do
not wish to see the presentation then you may choose to leave the room. In this
case, you may turn in a write up of this problem for credit as original work.
You must write original at the top of the page. There is no limit on the number
of original problems you can submit.

Write-ups and originals: You must turn in exactly one “new” problem each
week. A “new” problem means one that you have not turned in before. If
this problem has been presented in class, label it write-up. If it has not been
presented, label it original. If you receive a grade of less than “B,” you may
resubmit this problem on the following week, but you only get one resubmit
chance. Please write resubmit at the top. Be sure that everything you turn in
is double-spaced with your name, problem number, and problem statement on
it. Be sure and write either write-up, original, or resubmit, at the top of each
problem turned in.
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Grading for turn in assignments and board work will be based on the following
scale.

A, This is a correct proof.

B, I believe you know how to prove the theorem but some of what you
have written is not correct.

C, I cannot tell if you understand the problem based on what you have
written.

D, There is at least one major flaw in your argument.

Please understand that the purpose of these exercises is to teach you to prove
theorems, it is not expected that you started the class with this knowledge;
hence, some low grades are to be expected. Do not be upset — just come see
me.

12.3 To the Student

Topology is an area of mathematics, just as Algebra, Analysis and Geometry
are areas of mathematics. Like other areas Topology is generally defined heuris-
tically or not at all. The kind of problems we shall consider first are those that
have to do with the concept of a limit point of a set of real numbers or the limit
of a convergent sequence of real numbers as defined in an Analysis course such as
Calculus. There the definition is made in terms of the distance between points
and involves the concept of numbers being “near” one another. Precisely, the
number x is a limit point of the set M of numbers if for every positive number,
€, there is a point of M which is different from x and whose distance from x
is less than €. We start by defining a limit in a more abstract setting. We do
this by introducing a notion of “nearness” which does not depend on having a
distance between points. So we might consider this part of topology the study
of those concepts with can be defined in terms of limit points.

While topological spaces can be defined in very general settings, this sequence
is restricted to the study of linear topology, that is the study of the topological
properties of the real line. Many of the results that we will prove for the line hold
in general topological spaces and often the proofs given in class will not use any
properties of the line and thus are actually proofs for general topological spaces.
In brief, our goal is an understanding of the following topics: open and closed
sets, limit points, compactness, connectedness, measure of a set, sequences,
convergence, infemum, supremum, etc. While investigating these topics, we will
be developing the tools that are needed for such courses as general topology,
measure theory, functional analysis, differential equations, and so forth.
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12.4 Theorem Sequence
Definition 1 By a point is meant an element of the real numbers, R.
Definition 2 By a point set is meant a collection of one or more points.

Definition 3 The statement that the set S is a topological space means that
there is a collection of subsets of S, called regions, such that

i) if p is in S then there is a region that contains p, and

i1) if U and V are two regions having p in common then there is a region which
contains p and is a subset of UNV.

Definition 4 The statement that the point set M is linearly ordered means
that there is a meaning for the words “less than (<),” “less than or equal to
(<),” “greater than (>),” and “greater than or equal to (>).” If each of a, b
and c is in M, then

e ifa<bandb<cthena<c
e one and only one of the following is true:

—a<hb,
—b<a, or

—a=b.
Axiom 5 R is linearly ordered.
Axiom 6 If p is a point there is a point less than p and a point greater than p.

Axiom 7 If p and q are two points then there is a point between them, for
example, (p+q)/2.

Axiom 8 Ifa < b and c is any point, then a +c < b—+c,
Axiom 9 Ifa<bandc>0, thena-c<b-c. Ifc<O0, thena-c>b-c.

Axiom 10 If z is a point, then = is an integer or there is an integer n such
thatn < z <n+ 1.

Definition 11 The statement that the point set O is an open interval means

that there are two points a and b such that O is the set of all points between a
and b.
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Definition 12 The statement that I is a closed interval means that there are
two points a and b such that p € I if and only if p=a, p=b, or p is between a
and b.

Notation: We use the notation (a,b) to denote the open interval consisting of
all points p such that a < p < b. Similarly we use the notation [a,b] to denote
the closed interval determined by the two points a and b where a < b. We do
not use (a,b) or [a,b] in case a = b, although many mathematicians and texts
do.

Definition 13 If M is a point set and p is a point, the statement that p is a
limit point of M means that every region containing p contains a point of M
different from p.

Problem 14 Determine if R is a topological space if regions are defined to be
sets contaning ezactly one point. Le. R is a region if and only if R = {p} for
some p € N.

Problem 15 Determine if R is a topological space if the only region is the entire
space, R.

Problem 16 Determine if R is a topological space if only closed intervals are
T€gioNS.

Problem 17 Determine if R is a topological space if only half open intervals,
open on the right, are regions. That is, R is a region if and only if there are
numbers a and b with a < b such that R = {z|a < z < b}. Hint: If this were a
topological space, then it would be referred to as the Sorgenfrey line.

Theorem 18 Prove that R is a topological space if only open intervals are re-
gions.

Note: From this point on we interpret i to mean the topological space where
regions are defined to be open intervals. This topolgoical space would be referred
to as the usual topology on R or the Euclidean topology on R.

Definition 19 The statement that the set S is a Hausdorff space means that
S is a topological space and if p and q are two (distinct) elements of S then there
are mutually disjoint regions U and V containing p and q respectively.

Theorem 20 R is a Hausdorff space.
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Definition 21 The statement that the sequence p1,p2, D3, - - -, denoted (p;), con-
verges to the point p means that if R is a region containing p, then there is
a positive integer n such that if m is a positive integer and m > n, then p,, is
in R.

Definition 22 The statement that the sequence (p;) converges, means that
there is a point p such that (p;) converges to p.

Problem 23 For each positive integer n, let p, = 1 — 1/n. Show that the
sequence (p;) converges to 1.

Problem 24 If m is a positive, odd integer then p,, = 1/m while if m is a
positive, even integer then p, = (m + 1)/m. Show that the sequence, (p;) does
not converge to zero.

Problem 25 For each positive integer n, let pa, = 1/(2n—1), and let pa, 1 =
1/2n. Show that the sequence (p;) converges to 0.

Definition 26 If M is a point set, then the closure of M, denoted by Cl(M),
is the set to which the point p belongs if and only if p is a point of M or p is a
limit point of M.

Definition 27 The statement that the topological space S is regular at the
point p means that if U is a region containing p, there is a region V containing
p such that CI(V) CU.

Definition 28 The statement that the topological space S is regular means
that S is reqular at each of its points.

Theorem 29 R is a regular space.

Definition 30 If (p;) is a sequence, then the set {p; : i is a positive integer }
denotes the range of the sequence. That is, {p; : i is a positive integer } de-
notes the point set to which the point p belongs if and only if there is a positive
integer n. such that p = p,.

Problem 31 Show that if the sequence (p;) converges to the point p, and, for
each positive integer n, p, 7 Pni1, then p is a limit point of the set which is the
range of the sequence.

Definition 32 The statement that the set M is finite means that there is a
positive integer, n, such that M has n points and does not have n+1 points.
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Definition 33 The statement that the set M is infinite means that M is not
finite.

Definition 34 A rightmost point of a point set M is a point, r, such that
r € M and r > m for all m € M. Leftmost is defined analogously.

Definition 35 A first point to the right of a point set M is a point, T, such
that r > m for all m € M and there is no point s satisfying s < r and s > m
for all m € M. First point to the left of M is defined analogously.

Theorem 36 If M is a finite point set then M has a leftmost and rightmost
point.

Theorem 37 If p is a limit point of the point set M, then every region contain-
ing p contains infinitely many points of M.

Problem 38 Show that if ¢ is a number and (p;) is a sequence which converges
to the point p, then the sequence (cp;) converges to cp.

Problem 39 Show that if the sequence (p;) converges to p and the sequence
(g:) converges to q, then the sequence (p; + q;) converges to p + q.

Definition 40 The statement that the point sets H and K in a topological space
are mutually separated means that neither contains a point nor a limit point
of the other.

Definition 41 The statement that the point set M in a topological space S is
connected means that M is not the union of two mutually separated sets.

Theorem 42 If p is a limit point of the point set H and H is a subset of the
point set K, then p is a limit point of K.

Theorem 43 If H and K are point sets and p is a limit point of H U K, then
p 18 a limit point of H or p is a limit point of K.

Theorem 44 If a connected set M is a subset of the union of two mutually
separated point sets H and K, then it is a subset of one of them.

Theorem 45 If the sequence (p;) converges to the point p and q is a point
different from p, then (p;) does not converge to q.

Theorem 46 If the sequence (p;) converges to the point p and q is a point
different from p, then q is not a limit point of the range of the sequence (p;).
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Definition 47 The statement that the point set M is open means that if p is
a point of M, then there is a region, R, satisfying, p € R C M.

Note: Every region is an open set. Can you find some other open sets?

Definition 48 The statement that the point set M is closed means that if p is
a limit point of M, then p € M.

Theorem 49 If H and K are closed point sets then H U K and H N K are
closed.

Theorem 50 If H and K are regions then H U K and H N K are open.

Definition 51 If S is a set and M is a proper subset of S then M°€ is defined
by M€ ={s€ S:s¢ M}.

Theorem 52 If M is a point set and M is closed, then M€ is open.
Theorem 53 If M is a point set and M is open, then M€ is closed.

Theorem 54 If G is a finite collection of regions, each containing the point p,
then the set of all points which are in all the sets in G is an open point set.

Theorem 55 If G is an arbitrary (i.e. possibly infinite) collection of closed
point sets, each containing the point p, then the set of all points which are in
all the sets in G is a closed point set.

Theorem 56 If G is a finite collection of closed point sets, then G* is closed.
Theorem 57 If G is an arbitrary collection of open sets, then G* is open.

Note: If G is a collection of point sets, then the union of the members of G is
denoted by U{G|G €G} or UgcgG or, more simply, by G*. Similarly, the set of
points common to the members of G, called the intersection of the members of
G is denoted by N{G|G €G} or NgegG.

The previous few theorems imply:

e The collection of open sets is closed under the operation of arbitrary union.

e The collection of open sets is closed under the operation of finite intersec-
tion.
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e The collection of closed sets is closed under the operation of arbitrary
intersection.

e The collection of closed sets is closed under the operation of finite union.

Note: Some people would use these facts as the definition of a topological
space. They would say that a topological space was an ordered pair, (S, 7)
where S is the overlying space and 7 is a collection of subsets of S, called open
sets, such that

i) if p is a point in S then there is a member of 7 that contains p,

ii) 7 is closed under the operation of finite intersection

iii) 7 is closed under the operation of arbitrary union.

If we were using this definition for a topological space, then the defnition that
we are currently using would be referred to as a basis for the topological space.
Thus, using our definition, we obtain all the open sets by taking all possible
finite intersections and all possible infinite unions of collections of regions.

Theorem 58 If H and K are two mutually disjoint closed point sets, they are
mutually separated.

Theorem 59 If H and K are connected point sets having a point p in common,
then H U K is connected.

Theorem 60 If H is a connected point set and K is a point set and every point
of K is a limit point of H, then H U K 1is connected.

Definition 61 The statement that the point set M is bounded above means
that there is a point to the right of every number in M. The statement that M
is bounded below is defined similarly.

Definition 62 M is bounded means that M is bounded above and bounded
below.

Theorem 63 If the sequence (p;) converges to the point p, then the range of
this sequence is bounded.

Definition 64 The statement that the sequence (p;) is an increasing sequence
means that for each positive integer n, pp < Pp41-

Definition 65 The statement that the sequence (p;) is non-decreasing means
that for each positive integer n, p, < ppt1. We define a decreasing and non-
increasing sequence similarly.
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Theorem 66 If (p;) is a non-decreasing sequence and there is a point to the
right of each point of the sequence, then the sequence converges to some point.

Theorem 67 If G is a collection of connected point sets and one of them in-
tersects all the others, then G* is connected.

Definition 68 If M is a point set in a topological space S, then by a compo-
nent of M is meant a connected subset of M that is not a subset of any other
connected subset of M.

Theorem 69 If M is a point set and p is a point of M, then there is exactly
one component of M which contains p.

Definition 70 The statement that the sequence (p;) is a Cauchy sequence
means that if € is a positive number, then there is a positive integer n such that
if m is a positive integer and k is a positive integer, m > n, and k > n, then the
distance from p,, to py is less than e.

Note: More formally, but equivalently, the statement that the sequence (p;) is
a Cauchy sequence means that if € is a positive number then there is a positive
integer N such that if each of m and n is an integer, m > N and n > N then

|pm _pn| <e€

Note: Any theorems which use the definition of a Cauchy sequence assume,
in addition to our other axioms, that we have a distance between the points in
our space. On the number line, but the distance from the point a to the point
b is meant |a — b|. Recall that |p| is p or -p according as p is non-negative or
negative.

Theorem 71 If (p;) is a sequence converging to the point p, then the sequence
P1 — P2,DP2 — D3, ... converges to 0.

Note: The converse to Theorem 14 is, surprisingly, false. Find an example to
show this.

Axiom 72 If M is a point set and there is a point to the right of every point
of M, then M has either a rightmost point or a first point to the right.

Definition 73 The point described in axiom 72 is called the least upper
bound of M or the supremum of M. The point which would be described if
left and right were interchanged is called the greatest lower bound of M or the
infemum of M. These are usually denoted by lub(M) or sup(M) and glb(M)
or inf(M).
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Note: We have already been discussing the conecpts of lub(M), but calling it
either the rightmost point of M or the first point to the right of M, depending
on whether the point was an element of M or not. Axiom 72 is usually called
the Completeness axiom. Other equivalent axioms are Zorn’s lemma, the
Hausdorf maximal principle, Tukey’s lemma, Zermelo’s theorem, Ty-
chonoff’s theorem, and the axiom of choice. A linearly ordered space which
satisfies any of the equivalent forms would be called a complete space. Thus at
this point we could say we have a complete, linearly ordered space which
has no minimal or maximal element. I will mark with (AC) those theorems
which require the completeness axiom. We assume of course that a statement
similar to axiom 72, but with right and left reversed also holds. We might
restate axiom 72 as follow: “If M is bounded above (below) then M has a least
upper bound (greatest lower bound).”

Theorem 74 If M is a point set, there is a point to the right of every point of

M, b is the least upper bound of M and b is not in M, then b is a limit point of
M.

Theorem 75 (p;) is a Cauchy sequence if and only if it is true that for each
positive number d, there is a positive integer n such that if m is a positive integer
and m > n, then |p, — p| < d.

Theorem 76 If the sequence (p;) converges to a point p, then (p;) is a Cauchy
sequence.

Theorem 77 If (p;) is a Cauchy sequence, then the range of (p;) is bounded.

Theorem 78 If H and K are bounded sets and H C K then lub(H) < lub(K)
and glb(H) > glb(K).

Theorem 79 If H and K are bounded sets and L is the set to which the number
z belongs if and only if there is a number h € H and a number k € K such that
z =h+k, then glb(H) + glb(K) = glb(L) and lub(H) + lub(K) = lub(L).

Theorem 80 If (p;) is a Cauchy sequence, then the range of (p;) does not have
two limit points.

Theorem 81 If (p;) is a Cauchy sequence, then the sequence (p;) converges.
Definition 82 If (a,b) is a segment, then by the length of (a,b) is meant b-a.

Definition 83 If G is a collection of segments, let L(G) denote the set of all
numbers which are the sums of the lengths of finite subsets of G.
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Problem 84 Show that if G is a finite collection of segments, then lub(L(G))
is the sum of the lengths of the segments in G.

Problem 85 Show that if G is the summable collection of segments defined by G
= {(ai, b:)}32, then the sequence {3]_, (b —a;)}52, converges to the lub(L(G)).

Definition 86 If G is a summable collection of segments then by the sum of
the lengths of the members of G is meant lub(L(G)).

Definition 87 The statement that G is a summable collection of segments
means that G is a collection of segments such that L(G) is bounded.

Theorem 88 If (p;) is a sequence of points in the closed interval [a,b], then
there is a point in [a, b] which is not in the sequence (p;).

Theorem 89 If p is a limit point of the point set M then there is a sequence
of points p1,pa, D3, --- of M, all different and none equal to p which converge to

p.

Theorem 90 If (p;) is a sequence of distinct points in the closed interval, [a, b]
then the range of the sequence has a limit point.

Definition 91 The statement that the collection G of point sets covers the set
K means that if p is a point of K, then there is an element g € G such that
p € g. We call G a cover of K.

Problem 92 Find a collection G of open intervals covering the open interval
(a,b) such that no finite subset of G covers (a,b)

Problem 93 Find a collection G of closed intervals covering the open interval
(a,b) such that no finite subset of G covers (a,b).

Problem 94 Find a collection G of closed intervals covering the closed interval
[a,b] such that no finite subset of G covers [a,b].

Theorem 95 (AC) If G is a collection of open intervals covering the closed
interval [a,b], then some finite subset of G covers [a,b].

Definition 96 If L = { L( G ) : G is a collection of open intervals covering M
} then the outer measure of a point set, M, is defined by m(M) = glb( L ).

Problem 97 Show that the outer measure of the open interval, (a,b), and the
closed interval, [a,b], is b-a.
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Problem 98 Show that if M is a finite set, M has outer measure zero.

Definition 99 The statement that the point set M is countable means that M
is finite or there is a sequence (p;)2, of distinct points such that for each point
z in M, there is a positive integer i such that p; = x.

Problem 100 Show that if M is a countable point set then M has outer measure
zero.

Problem 101 Find a sequence Si,S3,S3,... of open intervals such that for
each positive integer n, S, 1 C Sp, and

a) NP=9°S,, is an open interval
b) "= S, is not an open interval.

Problem 102 Find a sequence I1,I5,1s,... of closed intervals such that for
each positive integer n, I, 1 C I, and

a) NP=9°1, is a closed interval

b) N=°1,, is not a closed interval.
Problem 103 Find an example of a sequence of closed point sets, each contain-
ing the next such that there is no point common to all the sets of the sequence.

Lemma 104 (AC) If {M;}32, is a nested sequence of closed intervals then
N2 M; is either a single point or a closed interval.

Lemma 105 If {M;}{2, is a nested sequence of closed sets and there is a point
common to all of them and p is a limit point of the set of all such points then p
is a limit point of My, for all k=1,2,...

Theorem 106 If {M;}2, is a sequence of closed point sets and there is a point
common to all the sets of the sequence {M;}3°,, then the set of all such points
is a closed point set.

Definition 107 The statement that the point set M is conditionally compact
means that if K is an infinite subset of M, then K has a limit point.

Problem 108 (AC) Show that the segment, (a,b), is conditionally compact.
Problem 109 Find an erxample of a sequence of conditionally compact sets,

each containing the next such that there is no point common to all the sets of
the sequence.
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Lemma 110 Show that if M is conditionally compact then M is bounded.

Theorem 111 If {M;}$°, is a sequence of closed and conditionally compact
point sets such that for each positive integer i, M; 1 C M;, then there is a point
common to all the sets of the sequence {M;}2, and the set of all such points is
a closed and conditionally compact point set.

Definition 112 The statement that the point set M is compact means that if
G is a collection of regions covering M, then some finite subset of G covers M.

Problem 113 Find an example of a point set which is closed, bounded, and
every point of M is a limit point of M, and which is not an interval.

Theorem 114 (AC) If M is an infinite and bounded point set then M has a
limit point.

Note: This theorem along with lemma 110 imply that a set M is conditionally
compact if and only if it is bounded.

Lemma 115 Show that if M is a countable set then there ezists a nested se-

[e o]

quence of closed intervals I, I3, 13, ... such that N2 I contains no point of
M.

Theorem 116 If (p;) is a sequence of distinct points in the closed interval [a,b],
then there is a point in [a,b] which is not in the sequence.

Definition 117 The statement that the set K is dense in the set M means
that every point of M is a point or a limit point of K.

Note: This definition would probably most often be given by saying K is dense
in M means that CI(K) = M. These are equivalent.

Theorem 118 There is a sequence (p;) of distinct points in the interval [a,b]
such that the range of the sequence is dense in [a,b].

Problem 119 Find a set which is closed, bounded, every point is a limit point
and contains no interval.

Theorem 120 No countable and closed point set M has the property that every
point of M is a limit point of M.

Note: This theorem guarantees that the Cantor set described above is not
countable. Can you find a rational number that is in the Cantor set? Can you
find a point of the Cantor set that is not an endpoint of one of the intervals
used in the construction of the set? Can you find an irrational number that is
in the Cantor set?
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Theorem 121 If M is a countable subset of an interval [a,b] then every point
of M is a limit point of [a,b]-M.

Note: It follows from the previous theorem that the set of all irrational numbers
in the interval [a,b] is dense in the interval [a,b].
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13.1 To the Instructor

The following sequence was developed for use in a one semester trigonometry
course at a small, regional, open-enrollment college. The course came to life
because over the past ten years I have felt less and less comfortable with the
trigonometry courses that I taught at Emory, The University of North Texas,
and Nicholls State University. I constantly found myself veering away from the
recommended textbook because of a lack of rigor. The emphasis of the texts
was on the quantity and type of problems rather than on the precision of the
material and the development of problem solving skills in the students. This
sequence is my attempt to produce in the students an understanding of the
trigonometric functions while honing their communication, presentation, and
problem solving skills. The typical class size is about ten students. For larger
classes, which I have yet to encounter, I would expect to have the students work
in groups where one person represents the group for the presentation of a given
problem, a technique that Charles Allen and Carol Browning have had success
with at Drury University.

The structure of the class is simple. I pass the notes to the students a few pages
at a time and have them work on and present the problems. It is understood
that they are to look only to themselves and to me for guidance; no books or
outside help of any other kind is to be sought out. As a problem is presented, I
turn to the class and ask if it is correct or if there are questions. While I might
lead with questions to the audience, I rarely point out mistakes at the board
and by midterm I have placed the burden of determining the correctness of each
problem completely on the class. If I am asked if a problem is correct, I merely
take a vote from the class or ask what they are worried about. I often jest that
if there is a mistake then surely they will find it if I put the problem on the final
or I suggest that we take a vote at the beginning of class the next day.

Generally, I offer minimal guidance until the students have nothing to present.
Then I chat informally about the upcoming definitions and problems so that
they have a better intuition. Direction of this type can easily double the speed
of a class and I definitely use this technique to assure that we cover what I
consider “sufficient material.” These are not lectures, rather they are discus-
sions where students’ questions are turned back to the class for debate. The
most important aspect of my sucessful classes has been constant open discourse
between the students so that they feel comfortable presenting material at the
board, asking questions of myself or students who are presenting, and defending
their arguments at the board.

At the beginning of the semester, I always fear that we are making minimal
progress, since students may spend an entire class struggling to put up a simple
problem, however, by the end of the course, they are putting up many correct
problems per class period. The learning curve is exponential and the patience
required at the beginning is rewarded as they learn to read carefully and do the
mathematics on their own. The approach and demeanor of the instructor is the

Copyright 1/01 W. Ted Mahavier 218



Texas-Style Theorem Sequences

critical element for success. The second time I taught this class, I added about
30% to the notes and we covered all the notes as they are presented here.

13.2 To the Student

The structure of this course will quite likely be different from previous courses
you have taken. There will be no book and all the notes that you will need will
be provided. These notes and my office hours are to be your only resources. The
notes that you will develop as you work through the problems in this sequence
will be your book, a collection of problems and solutions that you and your peers,
rather than me or the author of some text book, have worked out. The purpose
of this format is to actively involve you in the process of doing mathematics as
opposed to passively viewing a lecture and then mimicking problems slightly
modified from those you have been shown. The bad news is that this approach
is very different from your previous classes. The good news is that it is a lot
more fun to participate in a sport than to watch it on TV.

We will derive the subject of trigonometry essentially from scratch. Therefore,
when you work a problem you are not allowed to use anything that we have not
already discussed in the course with the exception of a few concepts listed in
the next paragraph or any concepts that you may create or define on your own.
You will not be allowed to use information that you may recall from previous
courses such as the fact that sin(f) = o/h until we have defined these terms
and proved this fact based on material developed in this course.

On the other hand, there are concepts that we will assume are familiar and you
should feel free to use as needed. We might refer to these as our “undefined
terms” since we will use them without stating a formal definition.

e circle, coordinate axes, origin, point
e line, line segment, ray
e arc, area, center, circumference, diameter, radius, and tangent of a circle

e triangle, similar triangles, square

All work presented or turned in is to be yours or that of your group. You are not
to discuss any problems with any one other than your group (or me), and you
are not to look into any books for further guidance. Grading for the course will
be the average of three grades: (i) the average of your board work grades (group
grades), (ii) the average of your written assignments, and (iii) the average of
midterm and final exam grades. Anyone who is regularly presenting material
at the board will certainly have adequate work for good grades on the written
assignments and thus will do well on the midterm and final. I emphasize that
the goal of the course for each student should be clear presentations at the board
of well prepared problems.
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If a problem is about to be presented at the board and you do not wish to see
the presentation then you may choose to leave the room. In this case, you may
turn in a write up of this problem for credit as original work. You must write
original at the top of the page. There is no limit on the number of original
problems you can submit.

You must turn in exactly one new problem each week. A new problem means
one that you have not turned in before. If this problem has been presented in
class, label it write-up. If it has not been presented, label it original. If you
receive a grade of less than “B,” you may resubmit this problem on the following
week and I will record the higer of the two grades. You only get one chance to
resubmit. Please write resubmit at the top. Be sure that everything you turn in
is double-spaced with your name, problem number, and problem statement on
it. Be sure and write either write-up, original, or resubmit, at the top of each
problem turned in.

Grading for turn in assignments and board work will be based on the following
scale.

A, This is a correct problem.

e B, I believe you know how to do the problem but some of what you have
written is not correct.

C, I cannot tell if you understand the problem based on what you have
written.

D, There is at least one major flaw in your argument.

The purpose of these exercises is to teach you to solve problems and write
the solutions correctly. It is not expected that you started the class with this
knowledge; hence, some low grades are to be expected. Do not be upset — just
come see me and resubmit the problem.

13.3 Problem Sequence
Definition 1 The unit circle is the circle centered at the origin of radius one.

Problem 2 Graph the unit circle and subdivide it into eight arcs of equal length
such that one division lies at the point (1,0). Working in a counter-clockwise
direction, determine the distance along the unit circle from the point (1,0) to
each of the divisions and label each division with this distance.

Problem 3 Repeat the previous exercise using a total of twelve divisions.

Copyright 1/01 W. Ted Mahavier 220



Texas-Style Theorem Sequences

Problem 4 Repeat the previous two exercises using a circle centered at the
origin and of radius two.

Definition 5 An angle is a subset of the plane consisting of two distinct rays
(or two distinct line segments) with a common endpoint called the vertex.

Definition 6 An angle in standard position is an angle where one of the
two rays is the postive z-axis. This ray is referred to as the initial side of the
angle. The other ray is referred to as the terminal side of the angle.

Definition 7 Given a circle centered at the origin and an angle in standard
position, let Py be the intersection of the circle with the initial side of the angle
and let P, be the intersection of the circle with the terminal side of the angle.
The arc associated with the angle is the portion of the circle traced by a
point traversing the circle in a counter clockwise direction from the point P; to
the point Ps.

Definition 8 Given a circle centered at the origin and an angle in standard
position the radian measure of the angle is the ratio of the length of the arc
associated with the angle to the radius of the circle.

Notation: If the radian measure of an angle is § then we will say that such an
angle has measure 0 radians.

Problem 9 Determine the radian measure of each angle illustrated below.

y A

(0,1) (1,1) (0,2) 2,2)

(1,0 (2,0)

-

Problem 10 Given an angle, not necessarily in standard position, make up a
definition for the radian measure of the angle.

Definition 11 Given a circle centered at the origin and an angle in standard
position the degree measure of the angle is 360/2w times the radian measure
of the angle.
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Historically, the circle was evenly divided into 360 arcs and an angle was said
to have degree measure 6 if the terminal side of the angle intersected the circle
at the 6" division. I have read two explanations of this — the choice of 360
was because it was believed there were 360 days in a year or because much
mathematics was done based on multiples of 60. If pressed, I could probably
come up with a source supporting these statements.

Definition 12 A right triangle is a triangle that has one angle with degree
measure 90.

Theorem 13 The sum of the degree measures of the interior angles of a triangle
is 90.

Definition 14 The hypotenuse of a right triangle is the side that is not ad-
jacent to the angle of degree measure 90.

Theorem 15 Pythagorean Theorem: Given a right triangle with sides of length,

a,b, and c where c is the length of the hypotenuse, we have a® + b% = 2.

Notation: If the degree measure of an angle is 6 then we will say that such an
angle has measure 0 degrees.

Problem 16 Determine the degree measure of each angle in the previous illus-
tration.

Problem 17 Graph the unit circle and the angle in standard position whose
measure is 150 degrees.

Problem 18 Graph the unit circle and the angle in standard position that has
measure w/4 radians. What are the z-y-coordinates of the point that is the
intersection of the terminal side of this angle with the unit circle?

Problem 19 Graph the unit circle and the angle in standard position that has
measure /3 radians. What are the z-y-coordinates of the point that is the
intersection of the terminal side of this angle with the unit circle? What is the
length of the arc associated with this angle?

Problem 20 Graph a circle of radius two centered at the origin and the angle
in standard position so that the length of the arc associated with the angle is
3n/2. What is the radian measure of this angle? What is the degree measure of
this angle?

Problem 21 Given a circle centered at the origin with radius five centimeters
and an angle in standard position with radian measure 7w/4, determine the
length of the arc associated with this angle.
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Problem 22 Suppose that a unicycle with a wheel of radius 9 inches is rolled
four feet. Through what radian measure has one spoke on this wheel traveled?
How many revolutions has the wheel made?

Problem 23 Suppose that it took 2 seconds to roll the unicycle (described in
the previous problem) 2 feet. What is the speed of the unicycle as measured
in inches per second? As measured in radians per second? As measured in
revolutions per second?

Problem 24 Given an angle of degree measure 270, determine the radian mea-
sure of the angle.

Problem 25 Given an angle of radian measure 2m/3, determine the degree
measure of this angle.

The development above hinges on the choice of the counter-clockwise direction
in the definition of the arc associated with the angle. An analagous series of
definitions can be made using clockwise direction. From this point forward, we
will use the convention that an angle measured in the clockwise direction from
the positive x-axis will have negative measure and be referred to as a negative
angle, while an angle measured in the counter-clockwise direction from the
positive x-axis will have a positive measure and be referred to as a positive
angle.

Problem 26 Locate the point on the unit circle so that the angle formed by
the radius of the circle containing this point and the positive z-azis is —3m /4
radians. What is this measure of this angle in degrees?

Problem 27 Given an angle of degree measure -405, determine the radian mea-
sure of this angle.

Question 28 Prepare an essay addressing the question: Does mathematics
have value to society? Defend your answer and state your sources. If you
are unsure as to what an essay is, please request my “essay resource kit” that
describes an essay and indicates grading guidelines.

Problem 29 Determine the coordinates in the ry-plane of each point on the
unit circle whose distance from the point (1,0) along the circle in a counter
clockwise direction is an integer multiple of /4.

Problem 30 Determine the coordinates in the zy-plane of each point on the
unit circle such that the angle that is in standard postion with terminal side
containing the point has radian measure an integer multiple of 7 /6.
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Definition 31 A function is a collection of points in the plane with the prop-
erty that no two of these points lie in the same vertical line.

You have probably seen the concept of a function denoted by such algebraic
expressions as perhaps f(z) = 22 or y = z2. These are not functions, rather they
are expressions that represent a function. The function itself is the collection of
points (or ordered pairs) that you might graph to form a graphical representation
of the function. Thus, I would say that we define a function f by the equation
f(z) = 22, and it is understood that f is the function consisting of the ordered
pairs generated by the equation. Thus f = {(1,1),(2,4),(-3,9),...}.

Definition 32 The first coordinates (z-coordinates) of all ordered pairs of a

function f are referred to as the domain of f while the second coordinates (y-
coordinates) are referred to as the range of f.

In the next definitions we will use the same type of notation to define a function
C as a collection of ordered pairs which are determined by a rule.

Definition 33 We define the function, C, so that if P = (z,y) is the point on
the unit circle so that the radius of the circle that contains P forms an angle of
radian measure 6 with the positive z-azis then C(0) = z. Hence (0,z) = (6,C(9))
is a point of the function, C.

Problem 34 Determine values for C(0),C(rn/6),C(w/4),C(xw/3),C(n/2),
C(2n/3),C(3n/4),C(5n/6), C(m), C(7n /6), C(57/4), C(4m/3),C(37/2),C(57/3),
C(7n/4),C(117/6), and C(27).

Problem 35 Graph the function C, using the ordered pairs, (6, C(6)), computed
in the previous problem.

Problem 36 Find a value for 0 where C(6) = 0. Are there others?
Problem 37 Determine an approzimate value for cos(m/5).

Problem 38 List all values for 8 where C(6) =1/2.

Problem 39 List all values for § where C(6) = /2/2.

Note: The previous problem could be stated, “Solve C() = v/2/2 for 6.”

Definition 40 We define the function, S, so that if P = (z,y) is the point on
the unit circle so that the radius of the circle that contains P forms an angle of
radian measure  with the positive z-azis then S(6) = y.
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Problem 41 Graph the function S.
Problem 42 Solve S(6) =1 for 6.
Problem 43 Solve S(0) = +/3/2 for 6.
Problem 44 Solve S(6) = —1/2 for 6.

Problem 45 Let f be the function defined by f(6) = —S(6) for every real
number 6. Graph f.

Problem 46 Let g be the function defined by g(0) = C(6 + ©/2) for every real
number 6. Graph g.

Definition 47 Let T be the function defined by T'(6) = S(0)/C(0) for every
real number 0.

Problem 48 For what values of 0 will T be undefined?
Problem 49 Write down a set that is the domain of T.
Problem 50 Graph T.

Problem 51 Write an essay on any mathematician’s contribution to society.
Ezxplain tje contribution in words that your classmates can understand. Make
enough copies (with your name omitted if you desire) for your classmates.

Notation: Given two points, A and B, in the plane, we denote the line seg-
ment between A and B by AB and the length of the line segment by 1(AB).

Problem 52 Let 6 be a number such that 0 < 8 < w/2. Draw the unit circle,
the line that is tangent to the unit circle at (1,0), and the line that forms an
angle of radian measure 6 with the positive z-axis.

Problem 53 Refer to the picture from the previous problem. Determine the
length of the line segment between (1,0) and the intersection of the two lines.
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D
A
(0,1)
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) A B/(1,0) C
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Note: Refer to the figure above for the next three problems. Assume that the
circle is a unit circle, 6 is the radian measure of the angle EAB, and 0 < 6 < /2.

Problem 54 Show that S(6) = XS2).

Problem 55 Show that C(8) = X49).

—

Problem 56 Show that T(6) = (G4

We have now defined three functions, referred to as S, C, and T. We have also
shown that if we have a right triangle with one angle of radian measure 6 and we
assume the side adjacent to this angle has length a, the side opposite from this
angle has length o, and the remaining side (the hypotenuse) has length h then
these functions satisfy, S(8) = o/h,C(0) = a/h, and T(8) = o/a. Of course,
these are the three trigonometric functions, sine, cosine, and tangent that are
commonly abbreviated as sin, cos, and tan respectively. Notice that we also
showed that the tangent function gets its name from the fact that it represents
the length of a line segment associated with a certain line tangent to the unit
circle. We now define three more functions in terms of the sine, cosine, and
tangent functions.

Definition 57 For any number 0 for which cosine is non-zero, let secant be the
function defined by sec(6) = 1/cos(8).

Definition 58 For any number 6 for which sine is non-zero, let cosecant be the
function defined by csc(8) = 1/sin(6).

Definition 59 For any number 0 for which cosine is non-zero, let cotangent be
the function defined by cot(8) = cos(8)/sin(0).
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Problem 60 Graph the secant function and list the domain and range.
Problem 61 Find all numbers u that satisfy, 2sin(u) = 1.

Note: The previous problem could be written, “Solve 2sin(u) = 1 for u.”
Problem 62 Graph the function defined by t(z) = 3sin(z — ).
Problem 63 Graph the function defined by f(z) = 5 — cos(2z).
Problem 64 Graph the function defined by r(z) = sin(z) + cos(z).
Problem 65 Graph the function defined by z(u) = usin(u).

Problem 66 At what minimum height above ground level must I place a satel-
lite dish so that at a 30 degree angle it will be able to “see” the sky over the top
of a building that is 40 feet tall and 50 feet away from the dish.

Problem 67 Solve 2cos(8) = —+/3 for 6.
Problem 68 Solve tan() =1 for 6.

Notation: sin™(f) means (sin(6))™ for all values of n except n = —1. In the
case of n = —1 this expression represents the inverse sine function to be defined
later. The same rule applies for all six of the trigonometric functions.

Problem 69 Solve cos?(6) —1 =0 for 6.

Problem 70 Graph the cosecant function.

Problem 71 Solve sin?(z) — sin(z) = 0 for .

Problem 72 Solve 2sin%(z/2) — 3sin(z/2) + 1 =0 for z.

Problem 73 Krista is standing at the edge of a long straight beach when she
sees Jared drowning. Assume that Jared is at a distance of 76 meters straight
out from a point on the beach that is 380 meters from where Krista is standing.
Assume that Krista can run at 6.5 meters per second and swim at 1.4 meters per
second. Krista runs down the beach toward Jared to a point P on the beach and
then dives into the water and swims to Jared. The angle at the point P between
the beach and the line from P to Jared has measure 77 degrees. How long does it
take Krista to save Jared? Could she have saved him faster by taking a different
path?
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Problem 74 Graph cotangent and list its domain and range.
Problem 75 Solve cot(6) > 0 for 6.
Problem 76 Graph the function defined by f(z) = 3 — 2sin(2z + ).

Problem 77 Write an essay addressing how you expect to use mathematics
upon leaving the university.

Problem 78 Let S be a square, let M and N be the midpoints of two adjacent
sides, and let V be the corner of the square that is opposite both M and N. Let 0
be the measure of the angle between the two lines connecting M and N with V.
Compute sin(0).

Problem 79 Graph the function defined by f(z) = —2 + 4cos(wz + 7 /4).
Problem 80 Solve 2sin(4z) — /3 = 0 for z.

Problem 81 A plane passes directly over your head at an altitude of 500 feet.
Two seconds later you observe that the angle of elevation of the plane is 42
degrees. What is the planes average speed over those two seconds?

Problem 82 Solve 2sin(z/3)+1 =0 for z.

Problem 83 In aerial and nautical navigation, 0 degrees represents due north
and directions are measured in degrees clockwise from north, so 90 degrees is
due east. If a plane travels 200 miles at a bearing of 300 degrees, how far west
of the airport is the plane? How far north? What are the coordinates of the
plane?

Problem 84 Solve 4cos®(2z) — 4cos(2z) + 1 =0 for z.

Definition 85 Let f be a function and A be a positive number. We say that f
has period A if f(z + A) = f(z) for all z in the domain of f.

Problem 86 Determine the periods of the six trigonometric functions.

Problem 87 Assume that 6 is a number so that neither sin(6) nor cos() is
zero. Simplify tan(0)cot(0). Why did we make this assumption about sine and
cosine not being zero?

Problem 88 Show that sin®(t) + cos®(t) = 1 for any number t.
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Problem 89 Prove that tan?(0) + 1 = sec?() is valid for all § where cos(6) #
0.

Problem 90 Show that 1+cot?(0) = csc?(6) is valid for all § where sin(0) # 0.

The three identities you have just derived are referred to as the Pythagorean
identities.

Problem 91 Solve 1 + cos(z) = sin(z) for z.
Problem 92 Solve csc(z) + cot(z) =1 for .
Problem 93 Solve cos®(z) = cos(z) + sin®(z) for z.

Problem 94 Simplify % For what values of o is this expression de-
fined? For what values of a is your simplified expression defined? Are the two

ezrpressions equal for all values of a?

Problem 95 Simplify (cos?(6) — 1)(tan?(0) + 1). For what values of 0 is this
ezrpression meaningful?

Problem 96 Simplify tan(z)cos(z).

Problem 97 Simplify <252

sec(z) "

Problem 98 Let f(z) = % Simplify f and state the domain of f.

Problem 99 Simplify (csc(z) — 1)(cse(z) + 1).

Problem 100 Simplify sis522) .

(1,0} Q = (1,0)
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Problem 101 Compute the distance between P and @Q in the first illustration.

Problem 102 Compute the distance between P' and Q' in the second illustra-
tion.

Problem 103 Set the results from the two previous problems equal and simplify
this expression.

The expression that you computed in the last problem is referred to as the
subtraction identity for the cosine function. This single identity gives rise to a
multitude of identities which we will now develop.

Definition 104 If f is a function and for every number, z, in the domain of f,
we have f(z) = f(—z) then we say that f is even.

Definition 105 If f is a function and for every number, z, in the domain of f,
we have f(z) = —f(—z) then we say that f is odd.

Problem 106 Show that every function can be written as the sum of an even
and an odd function.

Note: From a graphical point of view, these definitions correspond to symmetry
about the y-axis and symmetry about the origin respectively.

Problem 107 Let f, g, and h be the functions defined by f(z) = z2, g(z) = z°,
and h(z) = f(z) + g(z) for all numbers z. Prove that f is even, g is odd, and h
is neither even nor odd.

Problem 108 Determine which of the siz trigonometric functions are even and
which are odd.

Problem 109 Prove that if f is an even function and g is an odd function, then
the function defined by h(z) = f(z)g(z) is an odd function.

Problem 110 Substitute o = a and 3 = —b into the subtraction identity for
cosine to develop the addition identity for cosine.

Problem 111 Substitute « = w/2 and 8 = b into the subtraction identity
for cosine to develop one of the cofunction (or translation) identities. What
does this identity say about the graphs of sine and cosine? List at least three
additional cofunction identities.

Problem 112 Substitute & = a and 3 = b— w/2 into the addition identity for
cosine to develop yet another identity. What would you call this identity?
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Problem 113 There are a total of four addition and subtraction identities for
sine and cosine and we have developed three. Develop the fourth.

Problem 114 Compute a subtraction identity for tangent by simplifying the
quotient of the subtraction identity for sine and the subtraction identity for
cosine.

Problem 115 Compute an addition identity for tangent in a similar manner.

cos(z—y)
cos(z)sin(y) "

Problem 116 Prove or disprove: cot(z) + cot(y) =

Problem 117 Prove that cot(mw/2 — z) = tan(z).
Problem 118 Compute an ezact value for cos(m/12).
Problem 119 Compute an ezact value for sin(7m/12).

Now we can generate exact values for the sine and cosine of a new set of numbers,
specifically, those that are an integer multiple of 7/12. How many angles on the
unit circle can we find exact values of sine and cosine for now? What percentage
of the total number of numbers can get get an exact value for?

Problem 120 Prove that sin(2z) = 2sin(x)cos(z) is valid for all z.

Problem 121 Prove that cos(2z) = cos*(z) — sin?(zx) is valid for all z.

Problem 122 Prove that tan(2z) = % is valid for all z.

Problem 123 Solve sin(2z) = sin(z) for z.

These last three identities are referred to as the double angle identities and
show up quite a bit in calculus courses. The next two are referred to as the
half angle identities and can be derived easily from the double angle identities
if you can figure out what substition to make.

Problem 124 Prove that sin*(a/2) = lf%s(a) is valid for all a.

Problem 125 Prove that cos®(b/2) = H%s(b) is valid for all b.

Recall that a function is a collection of ordered pairs satisfying a certain prop-
erty. Not every function has an inverse, but if one does then the inverse of the
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function is the collection of ordered pairs obtained by reversing the 1% and 2"¢
coordinate of each ordered pair of f. Thus if f has an inverse and we denote it
by f~! then f(z) = y if and only if f~1(y) = z. The dilemma is that given a
simple function such as f(z) = z? if we reverse the coordinates then the new set
of coordinates do not satisfy the necessary property to be a function. We solve
this by restricting the domain. Thus, f(z) = z? has as its inverse f~!(z) = v/
over the domain, z > 0. The six inverse trigonometric functions are all defined
in this manner.

Definition 126 We define the arcsine (or inverse sine) to be the function
satisfying arcsin(z) = y if and only if sin(y) = ¢ and having domain —1 < z <
1 and range —m/2 < y < m/2.

Problem 127 Graph the inverse sine function.

Definition 128 We define the arccosine (or inverse cosine) to be the function
satisfying arccos(z) = y if and only if cos(y) = = and having domain —1 < z <
1 and range 0 < y < .

Problem 129 Graph the inverse cosine function.

Definition 130 We define the arctangent (or inverse tangent) to be the func-
tion satisfying arctan(z) = y if and only if tan(y) = = with domain all reals
and range —w/2 < y < w/2.

Problem 131 Graph the inverse tangent function.

Notation: The arcsine, arccosine, and arctangent functions are often denoted

by sin~!,cos !, and tan 1. This is an abuse of notation since sin~!(z) # ﬁ

Hence, sin™(#) means (sin(0))™ for all values of n ezcept n = —1 when it denotes
the inverse sine function.

Problem 132 What is the value for arcsin(—+/3/2)?
Problem 133 Compute arctan(1).

Problem 134 What is the difference between the results of the next two prob-
lems?

1. Solve cos(f) =1/2.
2. Compute cos 1(1/2).

Problem 135 Compute arccos(—1/v/2).
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Problem 136 Compute sin(tan 1(3/4)).

Problem 137 Compute cot(arccos(—2/3)).

Problem 138 Graph f(z) = arcsin(z + 3) for —4 <z < 2.

Problem 139 Graph g(z) = —2cos™(z/3) for -3 < z < 3.

Problem 140 Graph r(z) = arctan(1l — 2z) for —2 < z < 3.

Problem 141 Go to the library. Choose any book on trigonometry and copy
the pages that list all the identities. Check to be sure they are correct! Often
these can be found on the inside cover of trigonometry or calculus books.

Theorem 142 The solutions to az? + bx + ¢ = 0 are ¢ = —bEVb —dac Vzlf_‘lac.

Problem 143 Solve tan?(z) = 2tan(z) + 1 for z, listing all solutions. Approz-
imate these solutions using your calculator.

Problem 144 Solve sin?(z) + 2 = 4sin(z) for z.

Y
a b
[¢] a
c
Problem 145 Viewing the triangle above, show that s":‘w = ﬁ.

Problem 146 Viewing the triangle above, show that a® = b?+c?>—2 b ¢ cos(a).

For the next few problems, we will adhere to the convention that triangles will
be labeled with angles «, 3, and « and the sides opposite these angles will have
lengths, a,b, and c respectively. The expression, solve the triangle, means
to provide the lengths of any sides and the measure of any angles that are not
supplied in the problem. For each of the following problems, both solve and
draw the triangle to a reasonable degree of accuracy.

Problem 147 Draw and solve any triangles satisfying: a = 32,a = 2.5, 8 = 41.

Problem 148 Draw and solve any triangles satisfying: o = 29,0 = 7,c = 14.
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Problem 149 Draw and solve any triangles satisfying: a = 43,b = 6,c = 10.

Problem 150 Draw and solve any triangles satisfying: 8 = 72.2,b =78.3,c =
145.

Problem 151 Draw and solve any triangles satisfying: a = 6,b =8,c= 9.
Problem 152 Draw and solve any triangles satisfying: a = 26,a = 11,b = 18.
Problem 153 Draw and solve any triangles satisfying: a = 8,3 = 60,c = 11.
Problem 154 Draw and solve any triangles satisfying: a = 20,b = 10,c = 16.

Problem 155 Write an essay describing what, if anything, you have learned
from this course that will have a lasting impression on you. Sign, date, and seal
this essay. Give me this essay (anonymously, if you wish) after the semester is
over.

Problem 156 Find the length of one side of a mine-sided regular polygon in-
cribed in a circle of radius 8.32 centimeters.

Problem 157 Two birdwatchers, located at points A and B, are twelve and
one half miles apart. A Yellow Bellied Sap Sucker is located at point C by both
birders. Careful measurements indicate that /BAC = 14° while /ABC = 82°.
Which birder is closer to our Yellow Bellied Sap Sucker and how far is he from
the Sap Sucker?

Problem 158 An uptight observer stands at ground level some unknown dis-
tance away from the base of a building at point A and measures the angle between
ground level and the top of the building (called the angle of elevation) to be 63°.
After taking this measurement, she walks 140 feet directly away from the build-
ing to point B (also at ground level) where she measures the angle of elevation
to be 55°. Being weak in trigonometry, she gives you this data. Find the height
of the building.

Note: The following problem was brought to my attention by a very seasoned
sailor. He had a Captain’s license and regularly commanded vessels with length
in excess of 100 feet. He gave the example of a lighthouse that was there to
alert sailors to a reef that was 200 yards off the point where the lighthouse was
located. However, whenever he sailed there, we could not discern how far off
shore he was. He was familiar with angles and navigation utilizing trigonometry,
but he was not familiar with the law of sines. To solve his problem we must
learn a bit more about nautical and aerial navigation. A direction such as
N30°F is read as the direction 30° East of due North. Thus in terms of the
unit circle this is the direction determined by 7/3. S40°W is 40° West of South
and corresponds to 230° on the unit circle or 220° if we view 0° as due North.
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Problem 159 A sailor spots a lighthouse at N28°E and then proceeds east 7.5
nautical miles where he sites the lighthouse at N16°E. Find the distance from
the boat to the lighthouse. If the boat continues along the same path, determine
the minimum distance between the boat and the lighthouse.

Problem 160 In order to seal an oil pipeline, we must make a plate of 1/4”
steel to place on a flange at the open end of an open pipe. Our plate must be
circular with radius 6” and must have 7 holes drilled in it. These holes must be
3/167 in diameter, must be equally spaced, and their centers must be 1” from the
perimeter of the plate. What should be the distance between the centers of two
adjacent holes? Note: Industry standards require an answer accurate to one ten
thousandth of an inch.

Problem 161 Jack and Jill take off from the same airport at the same time in
their new Cesna and Beechcraft planes. Jack flies N35°W at 160 miles per hour
(mph) while Jill flies ST0°W at 170 mph. How far apart are the planes after
two hours? Determine a function that gives the distance between the planes as
a function of time, t, of hours of flight.

Problem 162 Two joggers in Central Park are resting on park benches at
points A and B, where point A is 1.2 miles north of point B. At midnight both
spot a walker. The jogger at point A observes the walker at a heading of N20.0°E
while the jogger at point B observes the walker at a heading of STO°E. At 12:10
A.M. the jogger at point A observes the walker at N34.0°E and the jogger at
point B observes her at S55°E. Find the walker’s average speed.

Problem 163 Write an essay on trigonometry.
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